IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/142850.html
   My bibliography  Save this article

Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device

Author

Listed:
  • S. A. Mavrakos
  • D. N. Konispoliatis

Abstract

This paper aims at presenting a general formulation of the hydrodynamic problem of a floating or restrained oscillating water column device. Three types of first-order boundary value problems are investigated in order to calculate the velocity potential of the flow field around the device. The horizontal and vertical exciting wave forces, the rolling moment, the hydrodynamic parameters, the volume flows, and the drift forces are obtained in order to find the loads on the structure. The efficiency rate of the device is calculated in connection with the absorbed power and the capture length of energy absorption. Finally, the resulting wave motion inside and outside the device and the inner air pressure are examined.

Suggested Citation

  • S. A. Mavrakos & D. N. Konispoliatis, 2012. "Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-27, November.
  • Handle: RePEc:hin:jnljam:142850
    DOI: 10.1155/2012/142850
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2012/142850.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2012/142850.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/142850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Concept and performance of a novel wave energy converter: Variable Aperture Point-Absorber (VAPA)," Renewable Energy, Elsevier, vol. 153(C), pages 681-700.
    2. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
    3. Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:142850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.