IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4850-d1176284.html
   My bibliography  Save this article

Power Quality Issues of Electro-Mobility on Distribution Network—An Overview

Author

Listed:
  • Shimi Sudha Letha

    (Electrical Engineering Department, Punjab Engineering College (Deemed-to-be University), Chandigarh 160012, India
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Math H. J. Bollen

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Tatiano Busatto

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Angela Espin Delgado

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Enock Mulenga

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Hamed Bakhtiari

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Jil Sutaria

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Kazi Main Uddin Ahmed

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Naser Nakhodchi

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Selçuk Sakar

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

  • Vineetha Ravindran

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Skellefteå, Sweden)

Abstract

The journey towards sustainable transportation has significantly increased the grid penetration of electric vehicles (EV) around the world. The connection of EVs to the power grid poses a series of new challenges for network operators, such as network loading, voltage profile perturbation, voltage unbalance, and other power quality issues. This paper presents a coalescence of knowledge on the impact that electro-mobility can impose on the grid, and identifies gaps for further research. Further, the study investigates the impact of electric vehicle charging on the medium-voltage network and low-voltage distribution network, keeping in mind the role of network operators, utilities, and customers. From this, the impacts, challenges, and recommendations are summarized. This paper will be a valuable resource to research entities, industry professionals, and network operators, as a ready reference of all possible power quality challenges posed by electro-mobility on the distribution network.

Suggested Citation

  • Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4850-:d:1176284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
    2. Akansha Jain & Masoud Karimi-Ghartemani, 2022. "Mitigating Adverse Impacts of Increased Electric Vehicle Charging on Distribution Transformers," Energies, MDPI, vol. 15(23), pages 1-26, November.
    3. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    4. Sheeraz Iqbal & Salman Habib & Noor Habib Khan & Muhammad Ali & Muhammad Aurangzeb & Emad M. Ahmed, 2022. "Electric Vehicles Aggregation for Frequency Control of Microgrid under Various Operation Conditions Using an Optimal Coordinated Strategy," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    5. Shimi Sudha Letha & Angela Espin Delgado & Sarah K. Rönnberg & Math H. J. Bollen, 2021. "Evaluation of Medium Voltage Network for Propagation of Supraharmonics Resonance," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    7. Meng, Jian & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qu, Bo, 2016. "Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system," Applied Energy, Elsevier, vol. 162(C), pages 966-979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    2. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    3. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    4. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    5. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    6. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    7. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    8. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    9. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    10. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    12. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    13. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    14. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    15. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    16. Jip Kim & Seung Wan Kim & Young Gyu Jin & Jong-Keun Park & Yong Tae Yoon, 2016. "Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security," Energies, MDPI, vol. 9(7), pages 1-15, July.
    17. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    18. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    19. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    20. Abubakr, Hussein & Lashab, Abderezak & Vasquez, Juan C. & Mohamed, Tarek Hassan & Guerrero, Josep M., 2023. "Novel V2G regulation scheme using Dual-PSS for PV islanded microgrid," Applied Energy, Elsevier, vol. 340(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4850-:d:1176284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.