Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.04.028
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Marsala, Giuseppe & Pucci, Marcello & Vitale, Gianpaolo & Cirrincione, Maurizio & Miraoui, Abdellatif, 2009. "A prototype of a fuel cell PEM emulator based on a buck converter," Applied Energy, Elsevier, vol. 86(10), pages 2192-2203, October.
- Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
- Ram, J. Prasanth & Manghani, Himanshu & Pillai, Dhanup S. & Babu, T. Sudhakar & Miyatake, Masafumi & Rajasekar, N., 2018. "Analysis on solar PV emulators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 149-160.
- Yan, Jianhu & Feng, Yi & Dong, Jianning, 2016. "Study on dynamic characteristic of wind turbine emulator based on PMSM," Renewable Energy, Elsevier, vol. 97(C), pages 731-736.
- Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
- Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
- Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
- Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Jan Engelhardt & Jan Martin Zepter & Tatiana Gabderakhmanova & Gunnar Rohde & Mattia Marinelli, 2021. "Double-String Battery System with Reconfigurable Cell Topology Operated as a Fast Charging Station for Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-19, April.
- Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
- Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
- Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
- Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
- Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
- Ummartyotin, S. & Bunnak, N. & Manuspiya, H., 2016. "A comprehensive review on modified clay based composite for energy based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 466-472.
- Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
- Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
- Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
- Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
- Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
- Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
- Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
- Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
- Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
More about this item
Keywords
Dynamic battery model; Hybrid battery model; Hardware emulation; Battery energy storage system (BESS); Lithium-ion battery; Power electronic converter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:183:y:2021:i:c:p:48-65. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.