IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v267y2020ics0306261920304992.html
   My bibliography  Save this article

A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle

Author

Listed:
  • Peng, Hujun
  • Li, Jianxiang
  • Löwenstein, Lars
  • Hameyer, Kay

Abstract

A scalable, causal, adaptive optimal control-based energy management strategy for the fuel cell hybrid train is designed. As learned from the results of offline Pontryagin’s minimum principle (PMP)-based strategies, the convexity of the specific consumption curve is emphasized to improve the fuel economy. More important is that the dependency of the co-state on the state of charge (SoC) of batteries and the average fuel cell power is identified the first time. With the help of using the optimal control theory in a reverse way, a quantitative analytical formula is derived to determine the co-state based on the SoC and the average fuel cell power. The accuracy of the estimates, and the effectiveness of this strategy, under different weather, driving, and aging conditions, is validated by comparison to the results of offline PMP-based strategies. Thereby, a maximal deviation of the co-state average value compared to the offline results is 1.8%. An excellent fuel economy under a typical driving cycle of regional railway transports in Berlin, with only 0.03% more consumption for both summer and winter conditions, compared to the results of offline PMP, is resulted. Due to the model-based characteristics, the strategy can be scaled or transferred to other configuration systems or driving conditions without the loss of effectiveness.

Suggested Citation

  • Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304992
    DOI: 10.1016/j.apenergy.2020.114987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    3. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    4. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    5. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    6. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    7. Onori, Simona & Tribioli, Laura, 2015. "Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt," Applied Energy, Elsevier, vol. 147(C), pages 224-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & Mohammad Ali Abdelkareem & Samah Ibrahim Alshathri & Enas Taha Sayed & Mohamad Ramadan & Abdul Ghani Olabi, 2023. "Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Marko Kapetanović & Mohammad Vajihi & Rob M. P. Goverde, 2021. "Analysis of Hybrid and Plug-In Hybrid Alternative Propulsion Systems for Regional Diesel-Electric Multiple Unit Trains," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Zhang, Chi & Zeng, Guohong & Wu, Jian & Wei, Shaoyuan & Zhang, Weige & Sun, Bingxiang, 2023. "Integrated optimization of driving strategy and energy management for hybrid diesel multiple units," Energy, Elsevier, vol. 281(C).
    4. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    5. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Jaekwang Jung & Dongeon Kim & Liyue Yang & Namwook Kim, 2024. "Optimal Energy Management Strategy for Repeat Path Operating Fuel Cell Hybrid Tram," Energies, MDPI, vol. 17(7), pages 1-12, March.
    7. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    8. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    3. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    5. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    6. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    7. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    8. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    9. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    10. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    11. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    12. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
    13. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    14. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    15. Matthias Breuer & David Windisch, 2019. "Investment Dynamics and Earnings‐Return Properties: A Structural Approach," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 639-674, June.
    16. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    17. Michael J. Pennock & William B. Rouse & Diane L. Kollar, 2007. "Transforming the Acquisition Enterprise: A Framework for Analysis and a Case Study of Ship Acquisition," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 99-117, June.
    18. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    19. Sasanka Adikari & Norou Diawara, 2024. "Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data," Stats, MDPI, vol. 7(1), pages 1-18, February.
    20. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.