IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1120-d1027756.html
   My bibliography  Save this article

Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data

Author

Listed:
  • Zhifu Wang

    (School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China
    School of Automation, Guangxi University of Science and Technology, Liuzhou 545000, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Wei Luo

    (School of Automation, Guangxi University of Science and Technology, Liuzhou 545000, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Song Xu

    (School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Yuan Yan

    (School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Limin Huang

    (School of Mechanical Engineering, ChengDu University, Chengdu 610106, China)

  • Jingkai Wang

    (School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Wenmei Hao

    (School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Zhongyi Yang

    (School of Automation, Guangxi University of Science and Technology, Liuzhou 545000, China)

Abstract

Power batteries are the core of electric vehicles, but minor faults can easily cause accidents; therefore, fault diagnosis of the batteries is very important. In order to improve the practicality of battery fault diagnosis methods, a fault diagnosis method for lithium-ion batteries in electric vehicles based on multi-method fusion of big data is proposed. Firstly, the anomalies are removed and early fault analysis is performed by t-distribution random neighborhood embedding (t-Sne) and wavelet transform denoising. Then, different features of the vehicle that have a large influence on the battery fault are identified by factor analysis, and the faulty features are extracted by a two-way long and short-term memory network method with convolutional neural network. Finally a self-learning Bayesian network is used to diagnose the battery fault. The results show that the method can improve the accuracy of fault diagnosis by about 12% when verified with data from different vehicles, and after comparing with other methods, the method not only has higher fault diagnosis accuracy, but also reduces the response time of fault diagnosis, and shows superiority compared to graded faults, which is more in line with the practical application of engineering.

Suggested Citation

  • Zhifu Wang & Wei Luo & Song Xu & Yuan Yan & Limin Huang & Jingkai Wang & Wenmei Hao & Zhongyi Yang, 2023. "Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1120-:d:1027756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & Mohammad Ali Abdelkareem & Samah Ibrahim Alshathri & Enas Taha Sayed & Mohamad Ramadan & Abdul Ghani Olabi, 2023. "Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    2. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    3. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    6. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    7. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    8. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    9. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    10. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
    11. Li, Marui & Dong, Chaoyu & Xiong, Binyu & Mu, Yunfei & Yu, Xiaodan & Xiao, Qian & Jia, Hongjie, 2022. "STTEWS: A sequential-transformer thermal early warning system for lithium-ion battery safety," Applied Energy, Elsevier, vol. 328(C).
    12. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    13. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    14. Hong, Jichao & Liang, Fengwei & Chen, Yingjie & Wang, Facheng & Zhang, Xinyang & Li, Kerui & Zhang, Huaqin & Yang, Jingsong & Zhang, Chi & Yang, Haixu & Ma, Shikun & Yang, Qianqian, 2024. "A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles," Energy, Elsevier, vol. 299(C).
    15. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).
    16. Li, Chao & Zeng, Kaidi & Li, Guanzheng & Chen, Peiyu & Li, Bin, 2023. "A novel fault diagnosis method for battery energy storage station based on differential current," Applied Energy, Elsevier, vol. 352(C).
    17. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1120-:d:1027756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.