IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1513-d151750.html
   My bibliography  Save this article

Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid

Author

Listed:
  • Omaji Samuel

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Mahmood Ashraf

    (Department of Computer Science, Federal Urdu University of Arts, Science and Technology, Islamabad 44000, Pakistan)

  • Farruh Ishmanov

    (Department of Electronics and Communication Engineering, Kwangwoon University, Seoul 01897, Korea)

  • Muhammad Khalil Afzal

    (Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan)

  • Zahoor Ali Khan

    (CIS, Higher Colleges of Technology, Fujairah 4114, United Arab Emirates)

Abstract

This paper presents a model for optimal energy management under the time-of-use (ToU) and critical peak price (CPP) market in a microgrid. The microgrid consists of intermittent dispatchable distributed generators, energy storage systems, and multi-home load demands. The optimal energy management problem is a challenging task due to the inherent stochastic behavior of the renewable energy resources. In the past, medium-sized distributed energy resource generation was injected into the main grid with no feasible control mechanism to prevent the waste of power generated by a distributed energy resource which has no control mechanism, especially when the grid power limit is altered. Thus, a Jaya-based optimization method is proposed to shift dispatchable distributed generators within the ToU and CPP scheduling horizon. The proposed model coordinates the power supply of the microgrid components, and trades with the main grid to reduce its fuel costs, production costs, and also maximize the monetary profit from sales revenue. The proposed method is implemented on two microgrid operations: the standalone and grid-connected modes. The simulation results are compared with other optimization methods: enhanced differential evolution (EDE) and strawberry algorithm (SBA). Finally, simulation results show that the Jaya-based optimization method minimizes the fuel cost by up to 38.13%, production cost by up to 93.89%, and yields a monetary benefit of up to 72.78% from sales revenue.

Suggested Citation

  • Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1513-:d:151750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    2. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    3. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    4. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    5. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    6. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omaji Samuel & Sakeena Javaid & Nadeem Javaid & Syed Hassan Ahmed & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "An Efficient Power Scheduling in Smart Homes Using Jaya Based Optimization with Time-of-Use and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(11), pages 1-27, November.
    2. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Sadiq Ahmad & Ayaz Ahmad & Muhammad Naeem & Waleed Ejaz & Hyung Seok Kim, 2018. "A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid," Energies, MDPI, vol. 11(10), pages 1-33, October.
    4. Rasool Bukhsh & Nadeem Javaid & Zahoor Ali Khan & Farruh Ishmanov & Muhammad Khalil Afzal & Zahid Wadud, 2018. "Towards Fast Response, Reduced Processing and Balanced Load in Fog-Based Data-Driven Smart Grid," Energies, MDPI, vol. 11(12), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    2. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    3. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    4. Setlhaolo, Ditiro & Sichilalu, Sam & Zhang, Jiangfeng, 2017. "Residential load management in an energy hub with heat pump water heater," Applied Energy, Elsevier, vol. 208(C), pages 551-560.
    5. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    6. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    8. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    9. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    10. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    11. Lešić, Vinko & Martinčević, Anita & Vašak, Mario, 2017. "Modular energy cost optimization for buildings with integrated microgrid," Applied Energy, Elsevier, vol. 197(C), pages 14-28.
    12. Ferahtia, Seydali & Houari, Azeddine & Cioara, Tudor & Bouznit, Mohammed & Rezk, Hegazy & Djerioui, Ali, 2024. "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, Elsevier, vol. 368(C).
    13. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    14. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    15. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    16. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    17. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    18. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    19. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    20. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1513-:d:151750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.