IDEAS home Printed from https://ideas.repec.org/a/taf/rcitxx/v21y2018i8p902-916.html
   My bibliography  Save this article

Modelling tourist flow association for tourism demand forecasting

Author

Listed:
  • Liang Zhu
  • Christine Lim
  • Wenjun Xie
  • Yuan Wu

Abstract

The purpose of this study is to examine tourism demand for Singapore from 1995 to 2013 by six major origin countries which belong to three different regions. Unlike prior tourism research, we take into account the dependence relations among the different tourist flows via copula. Copula is a statistical model of dependence and measurement of association. Specifically, we investigate the association between two tourist flows in each region. Based on empirical copula estimation, the Frank function has been identified as the most appropriate to capture the pairwise dependence structures of tourist flows. The copula-based approach combined with econometric models is proposed for tourism demand analysis that can be used to predict tourist arrivals. We apply the copula-ARDL and copula-ECM frameworks to generate joint forecasts of tourist arrivals from three regions. The findings show that the forecast performance of the Frank copula-based model outperforms the benchmark model which corresponds to the independence structure (no association) of tourist flows.

Suggested Citation

  • Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2018. "Modelling tourist flow association for tourism demand forecasting," Current Issues in Tourism, Taylor & Francis Journals, vol. 21(8), pages 902-916, May.
  • Handle: RePEc:taf:rcitxx:v:21:y:2018:i:8:p:902-916
    DOI: 10.1080/13683500.2016.1218827
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13683500.2016.1218827
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13683500.2016.1218827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxin Zhang & Yuting Yan & Jinyue Zhang & Peixue Liu & Li Ma, 2023. "Investigating the Spatial-Temporal Variation of Pre-Trip Searching in an Urban Agglomeration," Sustainability, MDPI, vol. 15(14), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rcitxx:v:21:y:2018:i:8:p:902-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rcit .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.