IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10841-d1191133.html
   My bibliography  Save this article

Impact of Rock Fragment Shapes and Soil Cohesion on Runoff Generation and Sediment Yield of Steep Cut Slopes under Heavy Rainfall Conditions

Author

Listed:
  • Jing Luo

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Peng Yang

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Xiangjun Pei

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Junhao Li

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Shihan Shan

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
    Power China Chengdu Engineering Corporation Limited, Chengdu 611130, China)

  • Yuying Duan

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Yingping Huang

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

Abstract

The erodibility and erosion resistance of Quaternary sediments play a pivotal role in both the hydrologic and erosion processes of soil cut slopes. To investigate the runoff and sediment yield of soil cut slopes along the Pai-Mo road, we performed indoor simulated rainfall experiments under a 50° steep slope and high rainfall intensity (120 mm/h), based on the area’s climatic characteristics and Quaternary sediment properties. The experiments included various rock fragment contents (30%, 40%, and 50%), different levels of rock fragment roundness (i.e., rounded gravel, angular gravel), and varying soil cohesion. The results indicated that the average infiltration rate of the uncemented rounded gravel soil slope (URGSS) was higher than that of the uncemented angular gravel soil slope (UAGSS), resulting in less runoff and a delayed initial runoff time. The runoff shear stress, runoff power, drag coefficient, and Reynolds number of the URGSS were smaller than those of the UAGSS. In contrast, the Froude number and flow velocity of the URGSS were larger, resulting in a stronger runoff erosion capacity. The sediment yield of the URGSS was approximately two times that of the UAGSS, and the cumulative sediment yield was about 20% higher. The cemented angular gravel soil slope (CAGSS) had a larger runoff rate, runoff shear stress, runoff power, and flow velocity than those of the UAGSS, leading to less sediment yield. Overall, a more rounded shape and a larger radius of curvature of the spherical particles resulted in stronger erosion, due to local turbulence. Therefore, the rill density and cumulative sediment yield of the steep alluvial cut slope were greater than that of the steep colluvial cut slope under heavy rainfall. Moreover, due to its strong cohesion, only raindrop splash erosion and inter-rill erosion occurred on the steep moraine cut slopes under heavy rainfall.

Suggested Citation

  • Jing Luo & Peng Yang & Xiangjun Pei & Junhao Li & Shihan Shan & Yuying Duan & Yingping Huang, 2023. "Impact of Rock Fragment Shapes and Soil Cohesion on Runoff Generation and Sediment Yield of Steep Cut Slopes under Heavy Rainfall Conditions," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10841-:d:1191133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiannan Yang & Haidong Gao & Yong Han & Zhanbin Li & Kexin Lu, 2022. "Evolution of the Relationship between Runoff and Sediment Transport during Flood Event in the Chabagou Watershed of the Loess Plateau," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    2. Mircea Moldovan & Ioan Tăut & Florin Alexandru Rebrean & Bartha Szilard & Iulia Diana Arion & Marcel Dîrja, 2022. "Determining the Anti-Erosion Efficiency of Forest Stands Installed on Degraded Land," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    3. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    3. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    4. Queiroz, Julia & Gasparinetti, Pedro & Bakker, Leonardo B. & Lobo, Felipe & Nagel, Gustavo, 2022. "Socioeconomic cost of dredge boat gold mining in the Tapajós basin, eastern Amazon," Resources Policy, Elsevier, vol. 79(C).
    5. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    7. Ramos Scharrón, Carlos E., 2023. "On the hydro-geomorphology of steepland coffee farming: Runoff and surface erosion," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Qing Li & Yong Zhou & Li Wang & Qian Zuo & Siqi Yi & Jingyi Liu & Xueping Su & Tao Xu & Yan Jiang, 2021. "The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China," IJERPH, MDPI, vol. 18(21), pages 1-16, October.
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    11. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    12. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    13. McCartney, Matthew & Rex, William & Yu, Winston & Uhlenbrook, Stefan & von Gnechten, Rachel, 2022. "Change in global freshwater storage," IWMI Reports 329159, International Water Management Institute.
    14. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    15. Clívia Dias Coelho & Demetrius David da Silva & Ricardo Santos Silva Amorim & Bruno Nery Fernandes Vasconcelos & Ernani Lopes Possato & Elpídio Inácio Fernandes Filho & Pedro Christo Brandão & José Am, 2024. "Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil," Land, MDPI, vol. 13(9), pages 1-20, September.
    16. Bunga Ludmila Rendrarpoetri & Ernan Rustiadi & Akhmad Fauzi & Andrea Emma Pravitasari, 2024. "Sustainability Assessment of the Upstream Bengawan Solo Watershed in Wonogiri Regency, Central Java Province, Indonesia," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    17. Sartori, Martina & Ferrari, Emanuele & Simola, Antti, 2022. "The economic effects of soil erosion in Africa: a 2050 analysis," Conference papers 333487, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Supriyono Supriyono & Utaya Sugeng & Taryana Didik & Handoyo Budi, 2021. "Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 125-142, September.
    19. Million Sileshi & Reuben Kadigi & Khamaldin Mutabazi & Stefan Sieber, 2019. "Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: endogenous switching regression and propensity score matching approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 797-815, August.
    20. Juliet Katusiime & Brigitta Schütt, 2023. "Towards Legislation Responsive to Integrated Watershed Management Approaches and Land Tenure," Sustainability, MDPI, vol. 15(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10841-:d:1191133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.