IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421003085.html
   My bibliography  Save this article

Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China

Author

Listed:
  • Zheng, Haijin
  • Nie, Xiaofei
  • Liu, Zhao
  • Mo, Minghao
  • Song, Yuejun

Abstract

The relationship between different rainfall types, different soil management practices, and soil erosion is not yet fully understood. In-situ observations of soil and water loss on sloping farmland in the red soil region of southern China with a subtropical monsoon environment were taken at 12 runoff plots with four treatments, i.e, downslope ridges, downslope ridges with hedgerow intercropping, contour ridges, and bare flat land as control, over a seven-year period from 2012 to 2018. During this time, 253 natural rainfall events were classified into three rainfall types by K-means clustering according to the rainfall depth, maximum-30 min rainfall intensity and rainfall duration, and surface runoff and soil erosion processes in relation to the rainfall types under different ridge practices were analyzed. The results show that water-induced soil erosion on the flat land control was significant, with average annual soil loss of 76.73 t·ha−1·yr−1, reaching the “intense erosion” classification, and ridge practices were confirmed to reduce annual runoff and soil loss in all rainfall events by 18.9–62.0% and 68.9–86.3%, respectively. On the whole, rainfall events can be divided into three types: intense, normal, and long-duration. Among them, intense and normal rainfall cause the majority of soil (88.5–93.7%) and water (75.0–83.8%) loss in this area, but the efficiencies in runoff and soil reduction during long-duration rainfall events were the lowest, or even negative on farmlands with only downslope ridges. 20% of the total rainfall events, in which 84.3–92.2% were intense and normal rainfall events, contributed to 29–33% of the total rainfall depth, 68–89% of the total runoff depth, and 94–98% of the total soil loss. Rainfall depth played a dominant role in generating runoff, while runoff accumulation was a main factor influencing on soil loss. Findings from our study indicate that by choosing a more appropriate ridge practice according to different rainfall types, there can be a positive effect on soil and water conservation.

Suggested Citation

  • Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003085
    DOI: 10.1016/j.agwat.2021.107043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.
    2. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    3. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    4. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    5. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    6. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    7. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xujie Gong & Chein-Chi Chang, 2022. "Monetized Estimates of the Ecosystem Service Value of Urban Blue and Green Infrastructure and Analysis: A Case Study of Changsha, China," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    2. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    3. Chenhui Li & Wenhai Shi & Mingbin Huang, 2023. "Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau," Land, MDPI, vol. 12(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    2. Omamuyovwi Gbejewoh & Saskia Keesstra & Erna Blancquaert, 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    3. Li, Chunxia & Li, Youjun & Fu, Guozhan & Huang, Ming & Ma, Chao & Wang, Hezheng & Zhang, Jun, 2020. "Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    5. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    7. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    8. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    9. Ali Keshavarzi & Vinod Kumar & Eduardo Leonel Bottega & Jesús Rodrigo-Comino, 2019. "Determining Land Management Zones Using Pedo-Geomorphological Factors in Potential Degraded Regions to Achieve Land Degradation Neutrality," Land, MDPI, vol. 8(6), pages 1-14, June.
    10. Blackmore, Ivy & Iannotti, Lora & Rivera, Claudia & Waters, William F. & Lesorogol, Carolyn, 2021. "Land degradation and the link to increased livelihood vulnerabilities among indigenous populations in the Andes of Ecuador," Land Use Policy, Elsevier, vol. 107(C).
    11. Bilal Aslam & Ahsen Maqsoom & Shahzaib & Zaheer Abbas Kazmi & Mahmoud Sodangi & Fahad Anwar & Muhammad Hassan Bakri & Rana Faisal Tufail & Danish Farooq, 2020. "Effects of Landscape Changes on Soil Erosion in the Built Environment: Application of Geospatial-Based RUSLE Technique," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    12. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    13. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    14. Paul, Priya Lal Chandra & Bell, Richard W & Barrett-Lennard, Edward G. & Kabir, Enamul, 2020. "Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Atul Kumar & Sunil Singh & Malay Pramanik & Shairy Chaudhary & Ashwani Kumar Maurya & Manoj Kumar, 2022. "Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3723-3761, March.
    16. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    17. Walmsley, Alena & Azadi, Hossein & Tomeckova, Katerina & Sklenicka, Petr, 2020. "Contrasting effects of land tenure on degradation of Cambisols and Luvisols: The case of Central Bohemia Region in the Czech Republic," Land Use Policy, Elsevier, vol. 99(C).
    18. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    19. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    20. Hamdi A. Zurqani & Elena A. Mikhailova & Christopher J. Post & Mark A. Schlautman & Azzeddin R. Elhawej, 2019. "A Review of Libyan Soil Databases for Use within an Ecosystem Services Framework," Land, MDPI, vol. 8(5), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.