IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1475-d1476393.html
   My bibliography  Save this article

Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil

Author

Listed:
  • Clívia Dias Coelho

    (Department of Technology in Civil Engineering, Computing, Automation, Telematics and Humanities, Campus Alto Paraopeba, Federal University of São João Del-Rei, Ouro Branco 36301-160, MG, Brazil)

  • Demetrius David da Silva

    (Department of Agricultural Engineering, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Ricardo Santos Silva Amorim

    (Department of Agricultural Engineering, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Bruno Nery Fernandes Vasconcelos

    (Department of Soils, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Ernani Lopes Possato

    (Department of Forestry Engineering, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Elpídio Inácio Fernandes Filho

    (Department of Soils, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Pedro Christo Brandão

    (Department of Soils, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • José Ambrósio Ferreira Neto

    (Department of Rural Economy, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

  • Lucas Vieira Silva

    (Department of Soils, Campus Universitário, Federal University of Viçosa, Viçosa 36301-160, MG, Brazil)

Abstract

The environmental vulnerability diagnosis of a river basin depends on a holistic analysis of its environmental aspects and degradation factors. Based on this diagnosis, the definition of priority areas where interventions for environmental recovery should be carried out is fundamental, since financial and natural resources are limited. In this study, we developed a methodology to assess these fragilities using an environmental vulnerability index (EVI) that combines physical and environmental indicators related to the natural sensitivity of ecosystems and their exposure to anthropogenic factors. The developed EVI was applied to the headwater region of the São Francisco River Basin (SFRB), Brazil. The proposed index was based on the AHP multicriteria analysis and was adapted to include four variables representative of the study area: Land Use Adequacy, Burned Area, Erosion Susceptibility, and quantitative water balance. The EVI analysis highlighted that the presence of easily erodible soils, associated with sloping areas and land use above their capacity, generate the most vulnerable areas in the headwaters of the SFRB. The highest EVI values are primarily linked to regions with shallow, easily erodible soils like Leptosols and Cambisols, found in steep areas predominantly used for pasture. In the SFBR, the greatest vulnerability was observed within a 5 km buffer around conservation units, covering approximately 32.4% of the total area. The results of this study indicate where resources should be applied for environmental preservation in the basin under study, directing the allocation of efforts to areas with lower resilience to maintain ecosystem services.

Suggested Citation

  • Clívia Dias Coelho & Demetrius David da Silva & Ricardo Santos Silva Amorim & Bruno Nery Fernandes Vasconcelos & Ernani Lopes Possato & Elpídio Inácio Fernandes Filho & Pedro Christo Brandão & José Am, 2024. "Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil," Land, MDPI, vol. 13(9), pages 1-20, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1475-:d:1476393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Louise Fonseca Aguiar & Marcio Cataldi, 2021. "Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2423-2437, December.
    3. Saaty, Thomas L. & Shang, Jennifer S., 2011. "An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: Prioritizing divergent intangible humane acts," European Journal of Operational Research, Elsevier, vol. 214(3), pages 703-715, November.
    4. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    2. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    3. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    4. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    5. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    6. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    7. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    8. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    9. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    10. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    11. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    12. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    13. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    14. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    15. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    16. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    17. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    18. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    19. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    20. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1475-:d:1476393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.