IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10358-d1183987.html
   My bibliography  Save this article

A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure

Author

Listed:
  • Guangyu Zou

    (School of Mechatronics Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Zhongkai Li

    (School of Mechatronics Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Chao He

    (School of Mechatronics Engineering, China University of Mining and Technology, Xuzhou 221000, China)

Abstract

In the background of global carbon-neutral requirements, enterprises need to control carbon emissions in the process of product lifecycles in order to gain market competitive advantages. Previous product configuration studies, mostly focused on minimizing carbon dioxide emissions, have ignored the issue of carbon-neutral costs. This study quantifies the product costs borne by enterprises and the carbon-neutral cost borne by the government, respectively. A carbon-neutral cost model for suppliers, enterprises, customers, and recycling plants in the whole life cycle of products was constructed. The whole life cycle carbon emissions and the unit carbon removal costs were taken into account in the carbon-neutral cost model. By minimizing product and carbon-neutral costs, a bi-objective integer programming model was constructed. The NSGA-II algorithm was introduced to solve the Pareto front of the model. The feasibility and effectiveness of this method were then illustrated through a case study and results comparison. It showed that, compared with the scheme of carbon emissions reduction, the optimization scheme with carbon-neutral costs as the object had a significant change. Integrating carbon-neutral costs into product development activities was effective in reducing the enterprise’s product cost and the government’s financial expenditure on carbon removal simultaneously. The proposed model could provide a win–win product configuration scheme for the government and enterprises.

Suggested Citation

  • Guangyu Zou & Zhongkai Li & Chao He, 2023. "A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10358-:d:1183987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    3. Aijun Liu & Qiuyun Zhu & Xiaohui Ji & Hui Lu & Sang-Bing Tsai, 2018. "Novel Method for Perceiving Key Requirements of Customer Collaboration Low-Carbon Product Design," IJERPH, MDPI, vol. 15(7), pages 1-32, July.
    4. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    5. Kilian, Bernard & Hettinga, Jelle & Jiménez, Gustavo André & Molina, Santiago & White, Adam, 2012. "Case study on Dole's carbon-neutral fruits," Journal of Business Research, Elsevier, vol. 65(12), pages 1800-1810.
    6. Dong Yang & Jia Li & Bill Wang & Yong-ji Jia, 2020. "Module-Based Product Configuration Decisions Considering Both Economical and Carbon Emission-Related Environmental Factors," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    7. Song, Jong-Sung & Lee, Kun-Mo, 2010. "Development of a low-carbon product design system based on embedded GHG emissions," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 547-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Kowalski & Marzena Lendo-Siwicka & Grzegorz Wrzesiński & Roman Trach, 2023. "Verification of Performance Standards for Construction Equipment in Terms of CO 2 Emissions," Sustainability, MDPI, vol. 15(21), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Blagu & Denisa Szabo & Diana Dragomir & Călin Neamțu & Daniela Popescu, 2022. "Offering Carbon Smart Options through Product Development to Meet Customer Expectations," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    2. Mendoza, Xavier & Carneiro, Jorge, 2012. "Introduction to the special issue of best papers Business Association of Latin American Studies 2010," Journal of Business Research, Elsevier, vol. 65(12), pages 1749-1751.
    3. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    4. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    5. Xiaojie Liu & Xuejian Gong & Roger J. Jiao, 2022. "Low-Carbon Product Family Planning for Manufacturing as a Service (MaaS): Bilevel Optimization with Linear Physical Programming," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    6. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    8. Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    9. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    10. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    12. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    14. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    15. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    16. Schön, Cornelia, 2010. "On the product line selection problem under attraction choice models of consumer behavior," European Journal of Operational Research, Elsevier, vol. 206(1), pages 260-264, October.
    17. Wu Yang & Zhang Min & Mingxing Yang & Jun Yan, 2022. "Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview," IJERPH, MDPI, vol. 19(21), pages 1-28, October.
    18. Thomas Deschamps & Mohamed Kanniche & Laurent Grandjean & Olivier Authier, 2022. "Modeling of Vacuum Temperature Swing Adsorption for Direct Air Capture Using Aspen Adsorption," Clean Technol., MDPI, vol. 4(2), pages 1-18, April.
    19. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    20. Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10358-:d:1183987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.