IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33694-y.html
   My bibliography  Save this article

High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis

Author

Listed:
  • Joey Disch

    (University of Freiburg
    University of Freiburg, Institute and FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies)

  • Luca Bohn

    (University of Freiburg
    University of Freiburg, Institute and FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies)

  • Susanne Koch

    (University of Freiburg
    Hahn-Schickard)

  • Michael Schulz

    (Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München)

  • Yiyong Han

    (Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München)

  • Alessandro Tengattini

    (Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR
    Institut Laue-Langevin)

  • Lukas Helfen

    (Institut Laue-Langevin)

  • Matthias Breitwieser

    (University of Freiburg
    Hahn-Schickard)

  • Severin Vierrath

    (University of Freiburg
    University of Freiburg, Institute and FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies
    Hahn-Schickard)

Abstract

The electrochemical reduction of CO2 is a pivotal technology for the defossilization of the chemical industry. Although pilot-scale electrolyzers exist, water management and salt precipitation remain a major hurdle to long-term operation. In this work, we present high-resolution neutron imaging (6 μm) of a zero-gap CO2 electrolyzer to uncover water distribution and salt precipitation under application-relevant operating conditions (200 mA cm−2 at a cell voltage of 2.8 V with a Faraday efficiency for CO of 99%). Precipitated salts penetrating the cathode gas diffusion layer can be observed, which are believed to block the CO2 gas transport and are therefore the major cause for the commonly observed decay in Faraday efficiency. Neutron imaging further shows higher salt accumulation under the cathode channel of the flow field compared to the land.

Suggested Citation

  • Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33694-y
    DOI: 10.1038/s41467-022-33694-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33694-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33694-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. David Wakerley & Sarah Lamaison & Joshua Wicks & Auston Clemens & Jeremy Feaster & Daniel Corral & Shaffiq A. Jaffer & Amitava Sarkar & Marc Fontecave & Eric B. Duoss & Sarah Baker & Edward H. Sargent, 2022. "Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers," Nature Energy, Nature, vol. 7(2), pages 130-143, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hugo-Pieter Iglesias van Montfort & Mengran Li & Erdem Irtem & Maryam Abdinejad & Yuming Wu & Santosh K. Pal & Mark Sassenburg & Davide Ripepi & Siddhartha Subramanian & Jasper Biemolt & Thomas E. Ruf, 2023. "Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    2. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    3. Ruijuan Zhao & Lei Li & Qianbao Wu & Wei Luo & Qiu Zhang & Chunhua Cui, 2024. "Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    5. Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    9. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    11. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    12. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    13. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Wu Yang & Zhang Min & Mingxing Yang & Jun Yan, 2022. "Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview," IJERPH, MDPI, vol. 19(21), pages 1-28, October.
    15. Thomas Deschamps & Mohamed Kanniche & Laurent Grandjean & Olivier Authier, 2022. "Modeling of Vacuum Temperature Swing Adsorption for Direct Air Capture Using Aspen Adsorption," Clean Technol., MDPI, vol. 4(2), pages 1-18, April.
    16. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    17. Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    18. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33694-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.