IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2906-d1367601.html
   My bibliography  Save this article

Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment

Author

Listed:
  • Tihamér Tibor Sebestyén

    (ProWood Regional Wood Cluster, 520064 Sfântu Gheorghe, Romania
    Faculty of Sfântu Gheorghe, Sapientia Hungarian University of Tranylvania, 520019 Sfântu Gheorghe, Romania)

Abstract

Despite the increasing popularity of glamping structures, empirical studies often overlook the carbon impact of wood in these constructions, creating a significant research gap. Understanding the net carbon effect of wood in glamping structures is crucial for informing sustainable building practices. This paper aims to quantitatively compare the net carbon impact of wood in glamping structures, filling a notable gap in the current research literature. The investigation undertakes a thorough evaluation employing a life cycle methodology, appraising the emissions linked with the complete glamping life span. Seven Romanian companies are examined vertically within the glamping production chain and horizontally across the supply value chain. The investigation unveils a notable discovery: the integration of wood within glamping yields considerable carbon sequestration, wherein the wood employed sequesters 36.83 metric tons of CO 2 per glamping unit. This surpasses the carbon emissions entailed throughout the entirety of the glamping life cycle, ranging from 9.97 to 11.72 metric tons of carbon. Remarkably, a single wood-incorporated glamping structure has the capacity to sequester approximately 25 metric tons of carbon within a span of 50 years. In summary, the investigation underscores the capacity of responsibly sourced timber to function as a carbon reservoir, proficiently counterbalancing emissions across the entirety of the construction life cycle. The findings underscore the importance of sustainably sourced wood in achieving carbon neutrality and provide valuable insights for promoting sustainable building practices. This methodology has broad applicability beyond glamping structures, holding potential for replication and scalability across various sectors and regions, thereby contributing to global efforts towards mitigating climate change and fostering positive environmental change.

Suggested Citation

  • Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2906-:d:1367601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Tsai, Kang-Ting & Lin, Tzu-Ping & Hwang, Ruey-Lung & Huang, Yu-Jing, 2014. "Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan," Tourism Management, Elsevier, vol. 42(C), pages 13-21.
    3. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Rui Cao & Yanhua Mo & Jiangming Ma, 2023. "Carbon Footprint Analysis of Tourism Life Cycle: The Case of Guilin from 2011 to 2022," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    2. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    3. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    4. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Andrés Lorente de las Casas & Ivelina Mirkova & Francisco J. Ramos-Real, 2021. "Stakeholders’ Perceptions of the Possible Energy Sustainability Solutions in the Hotels of the Canary Islands," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    8. Asif Raihan & Almagul Tuspekova, 2022. "Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(4), pages 794-814, December.
    9. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    11. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    12. Elżbieta Broniewicz & Karolina Dec, 2022. "Environmental Impact of Demolishing a Steel Structure Design for Disassembly," Energies, MDPI, vol. 15(19), pages 1-16, October.
    13. Nuez, Ignacio & Osorio, Javier, 2019. "Calculation of tourist sector electricity consumption and its cost in subsidised insular electrical systems: The case of the Canary Islands, Spain," Energy Policy, Elsevier, vol. 132(C), pages 839-853.
    14. Sadia Bano & Mehtab Alam & Anwar Khan & Lu Liu, 2021. "The nexus of tourism, renewable energy, income, and environmental quality: an empirical analysis of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14854-14877, October.
    15. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    17. Shan Dai & Wenfeng Bai & Jing Xiao, 2024. "Balancing Environmental Impact and Practicality: A Case Study on the Cement-Stabilized Rammed Earth Construction in Southeast Rural China," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
    18. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    19. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    20. Wu Yang & Zhang Min & Mingxing Yang & Jun Yan, 2022. "Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview," IJERPH, MDPI, vol. 19(21), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2906-:d:1367601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.