SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
- Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
- Shengjie Rui & Zhen Guo & Wenjie Zhou, 2023. "Promoting Sustainable Marine Development: Geotechnical Engineering Problems and Environmental Guarantee Technology in Marine Space, Energy, and Resource Development," Sustainability, MDPI, vol. 15(19), pages 1-3, October.
- Prahlada V. Mittal & Rishabh Bafna & Ankush Mittal, 2023. "Unsupervised learning framework for region-based damage assessment on xBD, a large satellite imagery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1619-1643, September.
- Lu Fang & Qian Wang & Jianping Yue & Yin Xing, 2023. "Analysis of Optimal Buffer Distance for Linear Hazard Factors in Landslide Susceptibility Prediction," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
- Yadviga Tynchenko & Vladislav Kukartsev & Vadim Tynchenko & Oksana Kukartseva & Tatyana Panfilova & Alexey Gladkov & Van Nguyen & Ivan Malashin, 2024. "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
- Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
- Han Zhang & Chao Yin & Shaoping Wang & Bing Guo, 2023. "Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1931-1971, March.
More about this item
Keywords
landslide detection; deep learning; attention mechanism; YOLOv7;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1522-:d:1207389. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.