Evaluation of Landslide Susceptibility of Mangshan Mountain in Zhengzhou Based on GWO-1D CNN Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jinxuan Zhou & Shucheng Tan & Jun Li & Jian Xu & Chao Wang & Hui Ye, 2023. "Landslide Susceptibility Assessment Using the Analytic Hierarchy Process (AHP): A Case Study of a Construction Site for Photovoltaic Power Generation in Yunxian County, Southwest China," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
- Lu Fang & Qian Wang & Jianping Yue & Yin Xing, 2023. "Analysis of Optimal Buffer Distance for Linear Hazard Factors in Landslide Susceptibility Prediction," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
- Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
- Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
- Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
- Peng Yu & Jie Dong & Hongwei Hao & Yongjian Xie & Hui Zhang & Jianshou Wang & Chenghao Zhu & Yong Guan & Haochen Yu, 2023. "Risk Assessment and Prevention Planning for Collapse Geological Hazards Considering Extreme Rainfall—A Case Study of Laoshan District in Eastern China," Land, MDPI, vol. 12(8), pages 1-22, August.
- Shaohan Zhang & Shucheng Tan & Jinxuan Zhou & Yongqi Sun & Duanyu Ding & Jun Li, 2023. "Geological Disaster Susceptibility Evaluation of a Random-Forest-Weighted Deterministic Coefficient Model," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
- Huan Lin & Xiaolei Deng & Jianping Yu & Xiaoliang Jiang & Dongsong Zhang, 2023. "A Study of Sustainable Product Design Evaluation Based on the Analytic Hierarchy Process and Deep Residual Networks," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
- Xuebin Xie & Yingling Huang, 2024. "Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
- Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.
- Chenhui Wang & Gaocong Lin & Cuiqiong Zhou & Wei Guo & Qingjia Meng, 2024. "Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition," Land, MDPI, vol. 13(10), pages 1-17, October.
- Kai Yuan & Biao Hu & Xinlong Li & Tingyun Niu & Liang Zhang, 2023. "Exploration of Coupling Effects in the Digital Economy and Eco-Economic System Resilience in Urban Areas: Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
- Shuai Liu & Jieyong Zhu & Dehu Yang & Bo Ma, 2022. "Comparative Study of Geological Hazard Evaluation Systems Using Grid Units and Slope Units under Different Rainfall Conditions," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
- Haishan Wang & Jian Xu & Shucheng Tan & Jinxuan Zhou, 2023. "Landslide Susceptibility Evaluation Based on a Coupled Informative–Logistic Regression Model—Shuangbai County as an Example," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
- Li Zhuo & Yupu Huang & Jing Zheng & Jingjing Cao & Donghu Guo, 2023. "Landslide Susceptibility Mapping in Guangdong Province, China, Using Random Forest Model and Considering Sample Type and Balance," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
More about this item
Keywords
Mangshan Mountain; landslide susceptibility; grey wolf optimizer; convolutional neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5086-:d:1415248. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.