IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9388-d1168469.html
   My bibliography  Save this article

An Approach to Understanding the Hydration of Cement-Based Composites Reinforced with Untreated Natural Fibers

Author

Listed:
  • Joan Llorens

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Fernando Julián

    (LEPAMAP-PRODIS Research Group, Department of Organization, Business Management and Product Design, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Ester Gifra

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Francesc X. Espinach

    (LEPAMAP-PRODIS Research Group, Department of Organization, Business Management and Product Design, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Jordi Soler

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Miquel Àngel Chamorro

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

Abstract

The use of untreated natural fibers to reinforce cementitious composites improves their environmental friendliness, resulting in a more sustainable material. Moreover, the influence of the untreated natural fibers on the hydration process of Portland cement composites presents some uncertainties. According to the literature, the most usual tests to analyze the degree of hydration of cement composites are the differential thermal and thermogravimetric analyses (TGA/dTGA). Several authors propose to analyze data methods to establish the degree of hydration of cement composites. This paper presents the TGA/dTGA test carried out on mortar samples with and without fibers at age 2, 3, 7, 14, and 28 days. The degree of hydration was calculated according to Bhatty’s method. To characterize the raw materials, the quantitative chemical was determined using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM–EDX). The main findings of this study were that the presence of untreated natural hemp fibers in the OPC composites increased the hydration degree by 9%. The presence of fibers affected the formation of several components. Thus, their presence increased the formation of monosulphate, reduced portlandite, did not affect ettringite, and increased the formation of calcite, thereby improving the sustainable footprint due to the increased CO 2 fixation.

Suggested Citation

  • Joan Llorens & Fernando Julián & Ester Gifra & Francesc X. Espinach & Jordi Soler & Miquel Àngel Chamorro, 2023. "An Approach to Understanding the Hydration of Cement-Based Composites Reinforced with Untreated Natural Fibers," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9388-:d:1168469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Azree Othuman Mydin & Mohd Nasrun Mohd Nawi & Ruba A. Odeh & Anas A. Salameh, 2022. "Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    2. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    3. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    4. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    5. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.
    6. Wenjia Jin & Kaushlendra Singh & John Zondlo, 2013. "Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method," Agriculture, MDPI, vol. 3(1), pages 1-21, January.
    7. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    8. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    9. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    10. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    11. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    12. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Marangoni, Cintia & Machado, Ricardo Antonio Francisco & Bolzan, Ariovaldo, 2022. "Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles," Renewable Energy, Elsevier, vol. 191(C), pages 238-250.
    13. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    14. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    15. Liu, Zhijia & Hu, Wanhe & Jiang, Zehui & Mi, Bingbing & Fei, Benhua, 2016. "Investigating combustion behaviors of bamboo, torrefied bamboo, coal and their respective blends by thermogravimetric analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 346-352.
    16. Carvalho, Wender Santana & Santana Júnior, José Alair & de Oliveira, Tiago José Pires & Ataíde, Carlos Henrique, 2017. "Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis," Energy, Elsevier, vol. 131(C), pages 186-197.
    17. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    18. Yang, Y. & Brammer, J.G. & Wright, D.G. & Scott, J.A. & Serrano, C. & Bridgwater, A.V., 2017. "Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact," Applied Energy, Elsevier, vol. 191(C), pages 639-652.
    19. Pereira, S. & Costa, M., 2017. "Short rotation coppice for bioenergy: From biomass characterization to establishment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1170-1180.
    20. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9388-:d:1168469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.