IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp238-250.html
   My bibliography  Save this article

Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles

Author

Listed:
  • Mumbach, Guilherme Davi
  • Alves, José Luiz Francisco
  • da Silva, Jean Constantino Gomes
  • Domenico, Michele Di
  • Marangoni, Cintia
  • Machado, Ricardo Antonio Francisco
  • Bolzan, Ariovaldo

Abstract

The pyrolysis of butia seed waste (BSW) was investigated under a thermogravimetric scale at multiples heating rates (5–40 °C min−1) in a nitrogen atmosphere. First, the pyrolysis behavior of BSW was deconvoluted into four independent reactions using the Asym2Sig fitting function. The kinetic triplets (activation energies, pre-exponential factors, and reaction models) were acquired using four isoconversional methods, the compensation effect method and the master plot method. The kinetic parameters estimated were in the range of 111.5–190.9 kJ mol−1 for the average activation energy and 1.55 × 1010–2.89 × 1014 min−1 for the pre-exponential factor. According to the master plot method, the pyrolysis of BSW is described by the summative effect of geometrical contraction and n-order reaction mechanisms. A multi-component kinetic approach was suitable for capturing the complexity involved in the pyrolysis of BSW, with a coefficient of determination (R2) > 0.95 and quality of fit (QOF) > 93%. Pyrolytic conversion of BSW into biofuels is characterized by an endothermic nature (ΔH > 0) and low reactivity (ΔS < 0). The volatile products evolved from the pyrolytic decomposition of BSW were characterized using the integrated TGA-FTIR system, which confirmed the presence of high-energy compounds (aromatics) and useful chemicals (aldehyde, ketone, esters, ether, and alcohols).

Suggested Citation

  • Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Marangoni, Cintia & Machado, Ricardo Antonio Francisco & Bolzan, Ariovaldo, 2022. "Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles," Renewable Energy, Elsevier, vol. 191(C), pages 238-250.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:238-250
    DOI: 10.1016/j.renene.2022.03.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badshah, Syed Lal & Shah, Zahir & Francisco Alves, José Luiz & Gomes da Silva, Jean Constantino & Iqbal, Arshad, 2021. "Pyrolysis of the freshwater macroalgae Spirogyra crassa: Evaluating its bioenergy potential using kinetic triplet and thermodynamic parameters," Renewable Energy, Elsevier, vol. 179(C), pages 1169-1178.
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    3. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & de Sena, Rennio Felix & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2022. "Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters," Renewable Energy, Elsevier, vol. 181(C), pages 207-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahareh Vafakish & Amin Babaei-Ghazvini & Mahmood Ebadian & Bishnu Acharya, 2023. "Pyrolysis and Combustion Behavior of Flax Straw as Biomass: Evaluation of Kinetic, Thermodynamic Parameters, and Qualitative Analysis of Degradation Products," Energies, MDPI, vol. 16(19), pages 1-20, October.
    2. Liborio, Denisson O. & Arias, Santiago & Mumbach, Guilherme D. & Alves, José Luiz F. & da Silva, Jean C.G. & Silva, Jose Marcos F. & Frety, Roger & Pacheco, Jose Geraldo A., 2024. "Evaluating black wattle bark industrial residue as a new feedstock for bioenergy via pyrolysis and multicomponent kinetic modeling," Renewable Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Long & Wang, Hong & Tu, Zhi & Hu, Jian & Wu, Fangfang, 2024. "Renewable fuel and value-added chemicals potential of reed straw waste (RSW) by pyrolysis: Kinetics, thermodynamics, products characterization, and biochar application for malachite green removal," Renewable Energy, Elsevier, vol. 229(C).
    2. Hossam A. Gabbar & Muhammad Sajjad Ahmad, 2024. "Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste," Energies, MDPI, vol. 17(2), pages 1-20, January.
    3. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    4. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    5. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    6. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    7. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    8. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    9. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    10. Pereira, S. & Costa, M., 2017. "Short rotation coppice for bioenergy: From biomass characterization to establishment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1170-1180.
    11. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    12. Joanna Wnorowska & Szymon Ciukaj & Sylwester Kalisz, 2021. "Thermogravimetric Analysis of Solid Biofuels with Additive under Air Atmosphere," Energies, MDPI, vol. 14(8), pages 1-19, April.
    13. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    14. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    15. Gabriel Fernando García Sánchez & Rolando Enrique Guzmán López & Roberto Alonso Gonzalez-Lezcano, 2021. "Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
    16. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    18. Li, Yingkai & Zhu, Linyu & Yellezuome, Dominic & Zhou, Zhongyue & Tao, Shanwen & Liu, Ronghou, 2024. "Catalytic pyrolysis of poplar sawdust pretreated with combined leaching and torrefaction over Fe–Ni/ZSM-5 for aromatic-rich bio-oil production," Renewable Energy, Elsevier, vol. 227(C).
    19. Manos, Basil & Bartocci, Pietro & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos, 2014. "Review of public–private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 667-678.
    20. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:238-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.