IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1771-d1595202.html
   My bibliography  Save this article

Multi-Objective Design Optimization and Experimental Investigation of a Low-Cost Solar Desalination System Under Al Qassim Climate

Author

Listed:
  • Bilel Najlaoui

    (Mechanical Engineering Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia)

  • Abdullah Alghafis

    (Department of Mechanical Engineering, College of Engineering, Qassim University, Buraida 51452, Saudi Arabia)

  • Hussain Sadig

    (Department of Mechanical Engineering, College of Engineering, Qassim University, Buraida 51452, Saudi Arabia)

  • Eihab A. Raouf

    (Department of Mechanical Engineering, College of Engineering, Qassim University, Buraida 51452, Saudi Arabia)

  • Mohamed Alobaidi Hassen

    (Department of Mechanical Engineering, College of Engineering, Qassim University, Buraida 51452, Saudi Arabia)

Abstract

Water is one of humanity’s most fundamental needs. The demand for freshwater rises in tandem with population expansion. Only 0.01 percent of freshwater is available as surface water in lakes, wetlands, and rivers. As a result, the only choice is to extract water from the oceans. Desalination is an effective option for this. This study focused on the multi-objective design optimization, fabrication, and thermal evaluation of an integrated desalination system combining a solar still with a flat plate collector (SS-FPC). The study investigated the trade-off between two competing objectives: maximizing the efficiency of the SS-FPC system while minimizing its total cost. A numerical code is written in MATLAB to simulate the influence of changing design parameters (DPs) on the SS-FPC performances. The optimal SS-FPC design, offering low costs and a high thermal efficiency, was identified using the multi-objective colonial competitive algorithm (MOCCA). This design was subsequently fabricated and experimentally evaluated under the climatic conditions of Unaizah in Al Qassim, Saudi Arabia. The optimal numerical results were compared with both the literature values and experimental measurements. The comparison revealed strong agreement with the experimental data, with a maximum relative error of 4%. Moreover, the obtained results indicate that the optimized SS-FPC design is capable of achieving a 31% increase in efficiency and a 49% reduction in total cost relative to those reported in the literature.

Suggested Citation

  • Bilel Najlaoui & Abdullah Alghafis & Hussain Sadig & Eihab A. Raouf & Mohamed Alobaidi Hassen, 2025. "Multi-Objective Design Optimization and Experimental Investigation of a Low-Cost Solar Desalination System Under Al Qassim Climate," Sustainability, MDPI, vol. 17(5), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1771-:d:1595202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ganjehkaviri, A. & Mohd Jaafar, M.N., 2020. "Multi-objective particle swarm optimization of flat plate solar collector using constructal theory," Energy, Elsevier, vol. 194(C).
    2. Muhannad Alaraj & Ibrahim Alsaidan & Astitva Kumar & Mohammad Rizwan & Majid Jamil, 2023. "Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    3. Mostafa AbdEl-Rady Abu-Zeid & Yasser Elhenawy & Monica Toderaș & Mohamed Bassyouni & Thokozani Majozi & Osama A. Al-Qabandi & Sameh Said Kishk, 2024. "Performance Enhancement of Solar Still Unit Using v-Corrugated Basin, Internal Reflecting Mirror, Flat-Plate Solar Collector and Nanofluids," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    4. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Om Prakash & Asim Ahmad & Anil Kumar & Rajeshwari Chatterjee & Somnath Chattopadhyaya & Shubham Sharma & Aman Sharma & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths," Energies, MDPI, vol. 15(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nejlaoui, Mohamed & Alghafis, Abdullah & Sadig, Hussain, 2022. "Six sigma robust multi-objective design optimization of flat plate collector system under uncertain design parameters," Energy, Elsevier, vol. 239(PA).
    2. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    4. Forghani, Amir Hossein & Hajabdollahi, Hassan, 2024. "Optimal design of solar collector network in novel hybrid desalination plant," Renewable Energy, Elsevier, vol. 237(PC).
    5. Pazouki, Ehsan, 2023. "A smart surface irrigation design based on the topographical and geometrical shape characteristics of the land," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Marzouk, S.A. & Abou Al-Sood, M.M. & M.S. El-Said, Emad & Younes, M.M. & K. El-Fakharany, Magda, 2023. "Evaluating the effects of bifurcation angle on the performance of a novel heat exchanger based on contractual theory," Renewable Energy, Elsevier, vol. 219(P1).
    7. Tang, Wei & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Shi, Junchao, 2021. "Constructal design for a boiler economizer," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1771-:d:1595202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.