IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3436-d349313.html
   My bibliography  Save this article

Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis

Author

Listed:
  • Qi Zhang

    (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
    College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
    Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China)

  • Jing Xiao

    (National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Jianhui Xue

    (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
    College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)

  • Lang Zhang

    (Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China)

Abstract

Agricultural disturbance has significantly boosted soil greenhouse gas (GHG) emissions such as methane (CH 4 ), carbon dioxide (CO 2 ), and nitrous oxide (N 2 O). Biochar application is a potential option for regulating soil GHG emissions. However, the effects of biochar application on soil GHG emissions are variable among different environmental conditions. In this study, a dataset based on 129 published papers was used to quantify the effect sizes of biochar application on soil GHG emissions. Overall, biochar application significantly increased soil CH 4 and CO 2 emissions by an average of 15% and 16% but decreased soil N 2 O emissions by an average of 38%. The response ratio of biochar applications on soil GHG emissions was significantly different under various management strategies, biochar characteristics, and soil properties. The relative influence of biochar characteristics differed among soil GHG emissions, with the overall contribution of biochar characteristics to soil GHG emissions ranging from 29% (N 2 O) to 71% (CO 2 ). Soil pH, the biochar C:N ratio, and the biochar application rate were the most influential variables on soil CH 4 , CO 2 , and N 2 O emissions, respectively. With biochar application, global warming potential (impact of the emission of different greenhouse gases on their radiative forcing by agricultural practices) and the intensity of greenhouse gas emissions (emission rate of a given pollutant relative to the intensity of a specific activity) significantly decreased, and crop yield greatly increased, with an average response ratio of 23%, 41%, and 21%, respectively. Our findings provide a scientific basis for reducing soil GHG emissions and increasing crop yield through biochar application.

Suggested Citation

  • Qi Zhang & Jing Xiao & Jianhui Xue & Lang Zhang, 2020. "Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3436-:d:349313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanqin Tian & Chaoqun Lu & Philippe Ciais & Anna M. Michalak & Josep G. Canadell & Eri Saikawa & Deborah N. Huntzinger & Kevin R. Gurney & Stephen Sitch & Bowen Zhang & Jia Yang & Philippe Bousquet & , 2016. "The terrestrial biosphere as a net source of greenhouse gases to the atmosphere," Nature, Nature, vol. 531(7593), pages 225-228, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrade Díaz, Christhel & Clivot, Hugues & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2023. "The crop residue conundrum: Maintaining long-term soil organic carbon stocks while reinforcing the bioeconomy, compatible endeavors?," Applied Energy, Elsevier, vol. 329(C).
    2. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    3. Marina M. Atilano-Camino & Ana P. Canizales Laborin & Angelita M. Ortega Juarez & Ana K. Valenzuela Cantú & Aurora M. Pat-Espadas, 2022. "Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    4. Jong-Mun Lee & Hyun-Cheol Jeong & Hyo-Suk Gwon & Hyoung-Seok Lee & Hye-Ran Park & Guen-Sik Kim & Do-Gyun Park & Sun-Il Lee, 2023. "Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Lening Hu & Shuangli Li & Ke Li & Haiyan Huang & Wenxin Wan & Qiuhua Huang & Qiuyan Li & Yafen Li & Hua Deng & Tieguang He, 2020. "Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    7. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    8. Carla Scotti & Chiara Bertora & Massimo Valagussa & Lamberto Borrelli & Giovanni Cabassi & Alberto Tosca, 2022. "Agroenvironmental Performances of Biochar Application in the Mineral and Organic Fertilization Strategies of a Maize–Ryegrass Forage System," Agriculture, MDPI, vol. 12(7), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wang & Hong Li & Zhihao Liu & Jianhua Lv & Xinzhang Song & Quan Li & Hong Jiang & Changhui Peng, 2021. "Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest," Land, MDPI, vol. 10(9), pages 1-16, September.
    2. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    4. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    6. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    7. Ya Liu & Ziqi Liu & Kangning Xiong & Yuan Li & Xiaoxi Lyu & Lulu Cai, 2023. "Carbon Nitrogen Isotope Coupling of Soils and Seasonal Variation Characteristics in a Small Karst Watershed in Southern China," Land, MDPI, vol. 12(2), pages 1-14, February.
    8. Zuoming Zhang & Xiaoying Wan & Kaixi Sheng & Hanyue Sun & Lei Jia & Jiachao Peng, 2023. "Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    9. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    10. Motoko Inatomi & Tomohiro Hajima & Akihiko Ito, 2019. "Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    11. Dafeng Hui & Avedananda Ray & Lovish Kasrija & Jaekedah Christian, 2024. "Impacts of Climate Change and Agricultural Practices on Nitrogen Processes, Genes, and Soil Nitrous Oxide Emissions: A Quantitative Review of Meta-Analyses," Agriculture, MDPI, vol. 14(2), pages 1-24, February.
    12. Xiaotao Huang & Yongsheng Yang & Chunbo Chen & Hongfei Zhao & Buqing Yao & Zhen Ma & Li Ma & Huakun Zhou, 2022. "Quantifying and Mapping Human Appropriation of Net Primary Productivity in Qinghai Grasslands in China," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    13. Piotr Kułyk & Łukasz Augustowski, 2020. "Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries," Energies, MDPI, vol. 13(20), pages 1-22, October.
    14. Nan Lu & Hanqin Tian & Bojie Fu & Huiqian Yu & Shilong Piao & Shiyin Chen & Ya Li & Xiaoyong Li & Mengyu Wang & Zidong Li & Lu Zhang & Philippe Ciais & Pete Smith, 2022. "Biophysical and economic constraints on China’s natural climate solutions," Nature Climate Change, Nature, vol. 12(9), pages 847-853, September.
    15. Mingxu Liu & Yu Song & Hitoshi Matsui & Fang Shang & Ling Kang & Xuhui Cai & Hongsheng Zhang & Tong Zhu, 2024. "Enhanced atmospheric oxidation toward carbon neutrality reduces methane’s climate forcing," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Li, Jinkai & Gao, Ming & Luo, Erga & Wang, Jingyi & Zhang, Xuebiao, 2023. "Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China," Energy Economics, Elsevier, vol. 119(C).
    17. Keith L Kline & Virginia H Dale, 2020. "Protecting Biodiversity through Forest Management: Lessons Learned and Strategies for Success," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 142-147, November.
    18. Aixia Xu & Lingling Li & Junhong Xie & Subramaniam Gopalakrishnan & Renzhi Zhang & Zhuzhu Luo & Liqun Cai & Chang Liu & Linlin Wang & Sumera Anwar & Yuji Jiang, 2022. "Changes in Ammonia-Oxidizing Archaea and Bacterial Communities and Soil Nitrogen Dynamics in Response to Long-Term Nitrogen Fertilization," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
    19. Condé, Tiago Monteiro & Tonini, Helio & Higuchi, Niro & Higuchi, Francisco Gasparetto & Lima, Adriano José Nogueira & Barbosa, Reinaldo Imbrozio & dos Santos Pereira, Taiguara & Haas, Manuel Alexander, 2022. "Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon," Land Use Policy, Elsevier, vol. 119(C).
    20. Xiao Ren & Bo Zhu & Hamidou Bah & Syed Turab Raza, 2020. "How Tillage and Fertilization Influence Soil N 2 O Emissions after Forestland Conversion to Cropland," Sustainability, MDPI, vol. 12(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3436-:d:349313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.