IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029042.html
   My bibliography  Save this article

Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India

Author

Listed:
  • Singh, Ranbir
  • Singh, Ajay
  • Sheoran, Parvender
  • Fagodiya, R.K.
  • Rai, Arvind Kumar
  • Chandra, Priyanka
  • Rani, Sonia
  • Yadav, Rajender Kumar
  • Sharma, P.C.

Abstract

Conventional rice-wheat cropping system (RWCS) in western Indo-Gangetic Plains (IGP) is carbon and energy intensive. A field experiment was conducted to evaluate energy budgeting, carbon footprints (CF) and greenhouse gas (GHG) emissions from RWCS under long-term tillage and residue management practices. Experiment consisted six treatment combination of tillage [conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT)] and residue [with residue (+R) and without residue (–R)] namely (i) CT-R (conventional farmers’ practice), (ii) CT + R, (iii) RT-R, (iv) RT + R, (v) ZT-R and (vi) ZT + R. Energy consumption ranged from 51.87 GJ ha−1 (ZT-R) to 64.91 GJ ha−1 (CT + R) and irrigation water was major energy intensive input (41–44%) followed by chemical fertilizer (32–40%). Compared to CT-R, energy use efficiency (EUE) increased by 8.7–22.4%, CF lowered by 77.9–34.3%, and GHG emission lowered by 12.8–16.3% in different treatments. Residue addition enhanced the soil carbon accumulation in ZT + R (1213 kg C ha−1 yr−1) and RT + R (987 kg C ha−1 yr−1). Overall, switching from CT–R to ZT + R lowered energy consumption (19%), GHG emission (16%) and CF (78%), making it best-bet option for climate change mitigation and global warming related environmental protection in western IGP and similar agro–ecologies.

Suggested Citation

  • Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029042
    DOI: 10.1016/j.energy.2021.122655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Adarsh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Sharma, V.K. & Prasad, Shiv & Gupta, Gaurendra & Choudhary, Mukesh & Pradhan, Amaresh & Rajpoot, Sudhir K. & Kumar, Abhishek & Kumar, Ami, 2021. "Energy budgeting and carbon footprints of zero-tilled pigeonpea–wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology," Energy, Elsevier, vol. 231(C).
    2. Saad, A.A. & Das, T.K. & Rana, D.S. & Sharma, A.R. & Bhattacharyya, Ranjan & Lal, Krishan, 2016. "Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 116(P1), pages 293-305.
    3. Khakbazan, Mohammad & Monreal, M. & Derksen, D.A. & Zentner, Robert P., 2004. "Evaluating Economics Of Greenhouse Gas Emission Under High And Low Inputs Farming System," Annual Meeting, 2004, June 20-23, Halifax, Nova Scotia 34197, Canadian Agricultural Economics Society.
    4. Choudhary, Mukesh & Rana, K.S. & Bana, R.S. & Ghasal, P.C. & Choudhary, G.L. & Jakhar, Praveen & Verma, R.K., 2017. "Energy budgeting and carbon footprint of pearl millet – mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem," Energy, Elsevier, vol. 141(C), pages 1052-1058.
    5. Kakraliya, S.K. & Jat, H.S. & Singh, Ishwar & Sapkota, Tek B. & Singh, Love K. & Sutaliya, Jhabar M. & Sharma, Parbodh C. & Jat, R.D. & Choudhary, Meena & Lopez-Ridaura, Santiago & Jat, M.L., 2018. "Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains," Agricultural Water Management, Elsevier, vol. 202(C), pages 122-133.
    6. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    7. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    8. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi, Min & Xu, Youzun & Zhou, Yongjin & Wu, Chenyang & Tu, Debao & Li, Zhong & Sun, Xueyuan & Wu, Wenge, 2024. "Energy use and carbon footprint in response to the transition from indica rice to japonica rice cropping systems in China," Energy, Elsevier, vol. 299(C).
    2. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Fu, Yuanyuan & Zhang, Yingying & Kpalari, Djifa Fidele & Wu, Xiaolei & Cao, Hui & Gao, Yang & Duan, Aiwang, 2024. "Application of resource-environmental-economic perspective for optimal water and nitrogen rate under high-low seedbed cultivation in winter wheat," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    2. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    3. Kumar, Adarsh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Sharma, V.K. & Prasad, Shiv & Gupta, Gaurendra & Choudhary, Mukesh & Pradhan, Amaresh & Rajpoot, Sudhir K. & Kumar, Abhishek & Kumar, Ami, 2021. "Energy budgeting and carbon footprints of zero-tilled pigeonpea–wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology," Energy, Elsevier, vol. 231(C).
    4. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    5. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    6. Kumar, Ashok & Singh, Dilip & Mahapatra, S.K., 2022. "Energy and carbon budgeting of the pearl millet-wheat cropping system for environmentally sustainable agricultural land use planning in the rainfed semi-arid agro-ecosystem of Aravalli foothills," Energy, Elsevier, vol. 246(C).
    7. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    8. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    9. Gurdeep Singh Malhi & M. C. Rana & Suresh Kumar & Muhammad Ishaq Asif Rehmani & Abeer Hashem & Elsayed Fathi Abd_Allah, 2021. "Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram ( Vigna mungo L.)," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    10. Kumar, Rakesh & Mishra, J.S. & Mondal, Surajit & Meena, Ram Swaroop & Sundaram, P.K. & Bhatt, B.P. & Pan, R.S. & Lal, Rattan & Saurabh, Kirti & Chandra, Naresh & Samal, S.K. & Hans, Hansraj & Raman, R, 2021. "Designing an ecofriendly and carbon-cum-energy efficient production system for the diverse agroecosystem of South Asia," Energy, Elsevier, vol. 214(C).
    11. Zhang, Yang & Zhang, Yan & Gao, Yan & McLaughlin, Neil B. & Huang, Dandan & Wang, Yang & Chen, Xuewen & Zhang, Shixiu & Liang, Aizhen, 2024. "Effects of tillage practices on environment, energy, and economy of maize production in Northeast China," Agricultural Systems, Elsevier, vol. 215(C).
    12. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    13. Sushanta Kumar Naik & Santosh Sambhaji Mali & Bal Krishna Jha & Rakesh Kumar & Surajit Mondal & Janki Sharan Mishra & Arun Kumar Singh & Ashis Kumar Biswas & Arbind Kumar Choudhary & Jaipal Singh Chou, 2023. "Intensification of Rice-Fallow Agroecosystem of South Asia with Oilseeds and Pulses: Impacts on System Productivity, Soil Carbon Dynamics and Energetics," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    14. Ngango, Jules & Nkurunziza, Fabrice, 2021. "Estimating the Impact of Sustainable Agricultural Intensification Practices on Household Productivity and Consumption in Rwanda: A Multinomial Endogenous Switching Regression," 2021 Conference, August 17-31, 2021, Virtual 315060, International Association of Agricultural Economists.
    15. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    18. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    19. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
    20. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.