IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8677-d1157046.html
   My bibliography  Save this article

Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar

Author

Listed:
  • Karolina Barčauskaitė

    (Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kėdainiai District, Lithuania)

  • Olga Anne

    (Engineering Department, Marine Technology and Natural Sciences Faculty, Klaipeda University, LT-92295 Klaipeda, Lithuania)

  • Ieva Mockevičienė

    (Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kėdainiai District, Lithuania)

  • Regina Repšienė

    (Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kėdainiai District, Lithuania)

  • Gintaras Šiaudinis

    (Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kėdainiai District, Lithuania)

  • Danutė Karčauskienė

    (Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kėdainiai District, Lithuania)

Abstract

Biochar is a promising tool to immobilize heavy metals (HMs) in the soil. Biochar’s effect on HMs immobilization into acidic soil (pH < 5) and the interaction of plants have been investigated. Three types of feedstocks were used for biochar development via pyrolysis at two temperatures and then applied as soil amendments. A vegetative experiment has been carried out with buckwheat and white mustard to determine the effect of biochar as an HMs immobilizing agent in the presence of sewage sludge. The results show promising biochar properties to immobilize heavy metals and reduce their availability for plants. Biochar incorporation increased soil pH and reduced heavy metal forms available to plants. A sequential extraction procedure was applied to investigate five different forms of six heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) and evaluate their distribution after plants’ cultivation. The proportion of the residual fraction (RES) of HMs varied widely and differed from metal to metal and from plant species. RES in the soil after treatment with biochar and buckwheat harvest varied between 68.14 and 96.40% for Zn, 42.39 and 59.48% (Cu), 75.89 and 93.11% (Cr), 81.85 and 92.83% (Ni), and 98.94 and 99.20% (Pb). In comparison, a slightly opposite trend was found in the soil after white mustard cultivation. The proportion of RES was: 0.82–53.44% for Zn, 0.99–52.93% (Cu), 48.87–76.41% (Cr), 10.22–72.63% (Ni), and 98.31–99.32% (Pb). HMs immobilization efficiency in the soil after biochar treatment followed the order Ni > Cr > Pb > Cu > Zn and Ni > Pb > Zn > Cr > Cu after buckwheat and white mustard cultivation, respectively.

Suggested Citation

  • Karolina Barčauskaitė & Olga Anne & Ieva Mockevičienė & Regina Repšienė & Gintaras Šiaudinis & Danutė Karčauskienė, 2023. "Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8677-:d:1157046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Ayaz & Dalia Feizienė & Vita Tilvikienė & Kashif Akhtar & Urte Stulpinaitė & Rashid Iqbal, 2021. "Biochar Role in the Sustainability of Agriculture and Environment," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Meina Liang & Lin Lu & Huijun He & Jingxi Li & Zongqiang Zhu & Yinian Zhu, 2021. "Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    4. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Anne & Ieva Mockevičienė & Danutė Karčauskienė & Regina Repšienė & Gintaras Šiaudinis & Karolina Barčauskaitė & Greta Žilė, 2023. "Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil," Sustainability, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Kanbur, Ravi & Bento, Antonio M. & Leard, Benjamin, 2012. "SUPER-ADDITIONALITY: A Neglected Force in Markets for Carbon Offsets," Working Papers 128811, Cornell University, Department of Applied Economics and Management.
    3. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    4. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    9. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    10. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    11. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    12. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    13. Shangdiar, Sumarlin & Lin, Yuan-Chung & Cheng, Pei-Cheng & Chou, Feng-Chih & Wu, Wen-Ding, 2021. "Development of biochar from the refuse derived fuel (RDF) through organic / inorganic sludge mixed with rice straw and coconut shell," Energy, Elsevier, vol. 215(PB).
    14. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    15. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    16. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    17. Joab J. L. Osumba & John W. Recha & George W. Oroma, 2021. "Transforming Agricultural Extension Service Delivery through Innovative Bottom–Up Climate-Resilient Agribusiness Farmer Field Schools," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
    18. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    19. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    20. Motasem Y. D. Alazaiza & Ahmed Albahnasawi & Murat Eyvaz & Tahra Al Maskari & Dia Eddin Nassani & Salem S. Abu Amr & Mohammed Shadi S. Abujazar & Mohammed J. K. Bashir, 2023. "An Overview of Green Bioprocessing of Algae-Derived Biochar and Biopolymers: Synthesis, Preparation, and Potential Applications," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8677-:d:1157046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.