IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v71y2025i1id299-2024-pse.html
   My bibliography  Save this article

Effects of modulating probiotics on greenhouse gas emissions and yield in rice paddies

Author

Listed:
  • Shang-Hung Pao

    (Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan)

  • Hewder Wu

    (Enrich Microbiome Ltd., Tainan, Taiwan)

  • Hwey-Lian Hsieh

    (Biodiversity Research Center, Academia Sinica, Taipei, Taiwan)

  • Chang-Po Chen

    (Biodiversity Research Center, Academia Sinica, Taipei, Taiwan)

  • Hsing-Juh Lin

    (Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
    Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan)

Abstract

Rice serves as a crucial staple food for nearly half of the world's population. However, rice paddies contribute remarkably to greenhouse gas (GHG) emissions. Prior studies often showed a trade-off between reducing GHG emissions and impairing rice yield. In this study, we explore the possibility of employing modulating probiotics to develop a win-win strategy for enhancing rice yields while reducing GHG emissions. Three paired plots of rice paddies were used in the field experiment during the spring growing season (from February to July 2022). Each pair of plots was divided into control and probiotic addition paddies to investigate the effects of modulating probiotic treatment on GHG emissions using the whole-plant chambers. Our results revealed notable reductions in GHG emissions and increases in rice yield with the probiotic treatment relative to the control. The probiotic treatment resulted in a 47.58% reduction in carbon dioxide (CO2) emissions, a 21.53% reduction in methane (CH4) emissions, and an impressive 88.50% reduction in nitrous oxide (N2O) emissions over the growing season. We also observed a 27.75% increase in rice yield with the probiotic treatment. These findings suggest that employing modulating probiotics has the potential to pave the way for mutually beneficial outcomes, enhancing rice productivity while mitigating the GHG emissions associated with rice cultivation.

Suggested Citation

  • Shang-Hung Pao & Hewder Wu & Hwey-Lian Hsieh & Chang-Po Chen & Hsing-Juh Lin, 2025. "Effects of modulating probiotics on greenhouse gas emissions and yield in rice paddies," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 71(1), pages 21-35.
  • Handle: RePEc:caa:jnlpse:v:71:y:2025:i:1:id:299-2024-pse
    DOI: 10.17221/299/2024-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/299/2024-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/299/2024-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/299/2024-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Kimberly M. Carlson & James S. Gerber & Nathaniel D. Mueller & Mario Herrero & Graham K. MacDonald & Kate A. Brauman & Petr Havlik & Christine S. O’Connell & Justin A. Johnson & Sassan Saatchi & Paul , 2017. "Greenhouse gas emissions intensity of global croplands," Nature Climate Change, Nature, vol. 7(1), pages 63-68, January.
    3. Liu, Xiaoyu & Zhou, Tong & Liu, Yuan & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2019. "Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis," Agricultural Water Management, Elsevier, vol. 213(C), pages 1028-1035.
    4. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Nadia Binti Salim & Siti Sarah Jumali, 2020. "The use of yogurt bacteria in increasing the growth performance of diseased paddy," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 16(2), pages 101-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang-Hung Pao & Hewder Wu & Hwey-Lian Hsieh & Chang-Po Chen & Hsing-Juh Lin, . "Effects of modulating probiotics on greenhouse gas emissions and yield in rice paddies," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    2. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    3. Zhao, Xueyin & Chen, Mengting & Xie, Hua & Luo, Wanqi & Wei, Guangfei & Zheng, Shizong & Wu, Conglin & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2023. "Analysis of irrigation demands of rice: Irrigation decision-making needs to consider future rainfall," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Alina Georgiana Manta & Nicoleta Mihaela Doran & Gheorghe Hurduzeu & Roxana Maria Bădîrcea & Marius Dalian Doran & Florin Liviu Manta, 2024. "Is there a direct benefit of using electronic commerce and electronic banking in mitigating climate change?," Climatic Change, Springer, vol. 177(10), pages 1-22, October.
    5. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    6. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    8. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Chris D. Evans & Rebecca L. Rowe & Benjamin W. J. Freeman & Jennifer M. Rhymes & Alex Cumming & Isobel L. Lloyd & Daniel Morton & Jennifer L. Williamson & Ross Morrison, 2024. "Biomethane produced from maize grown on peat emits more CO2 than natural gas," Nature Climate Change, Nature, vol. 14(10), pages 1030-1032, October.
    10. Chaisri Tarasawatpipat & Witthaya Mekhum, 2021. "Rethinking the Reasons of Greenhouse Gases Emission in ASEAN Countries: Finding Reasons in Urbanization, Industrialization and Population Growth," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 544-550.
    11. Rogovska, Natalia & O’Brien, Peter L. & Malone, Rob & Emmett, Bryan & Kovar, John L. & Jaynes, Dan & Kaspar, Thomas & Moorman, Thomas B. & Kyveryga, Peter, 2023. "Long-term conservation practices reduce nitrate leaching while maintaining yields in tile-drained Midwestern soils," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Robert Beyer & Tim Rademacher, 2021. "Species Richness and Carbon Footprints of Vegetable Oils: Can High Yields Outweigh Palm Oil’s Environmental Impact?," Sustainability, MDPI, vol. 13(4), pages 1-10, February.
    13. Ajay Philip & Rahul R. Marathe, 2022. "A New Green Labeling Scheme for Agri-Food Supply Chains: Equilibrium and Information Sharing under Uncertainties," Sustainability, MDPI, vol. 14(23), pages 1-34, November.
    14. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    16. Xinyan Liu & Huanhao Han & Shixiang Gu & Rong Gao, 2023. "Effects of Urea Application on Soil Organic Nitrogen Mineralization and Nitrogen Fertilizer Availability in a Rice–Broad Bean Rotation System," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    17. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Chuanhe Xiong & Shuang Chen & Liting Xu, 2020. "Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1401-1416, September.
    19. Liang, Hao & Xu, Junzeng & Hou, Huijing & Qi, Zhiming & Yang, Shihong & Li, Yawei & Hu, Kelin, 2022. "Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems," Agricultural Systems, Elsevier, vol. 203(C).
    20. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:71:y:2025:i:1:id:299-2024-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.