IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8270-d1150601.html
   My bibliography  Save this article

Study on Skywell Shape in Huizhou Traditional Architecture Based on Outdoor Wind Environment Simulation

Author

Listed:
  • Huanhuan Fang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Xiang Ji

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China
    Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China)

  • Yun Chu

    (School of Architecture and Design, China University of Mining and Technology, Xuzhou 221000, China)

  • Lufeng Nie

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Jianyuan Wang

    (School of Architecture and Design, China University of Mining and Technology, Xuzhou 221000, China)

Abstract

This study was conducted in the context of the latest Chinese policy on “double carbon”. First, we obtained building skywell and meteorological data parameters through a site survey and measurements. We applied the PHOENICS software to simulate and analyze the wind environment of a traditional building skywell. Secondly, the outdoor wind environment of typical building skywells could be simulated and evaluated one by one. Finally, using the method of controlling the variables and by combining typical buildings and skywell-scale layouts, the study summarized and compared the wind environment of the skywell under different scale combinations from three aspects: building skywell shape, skywell scale ratio, and skywell door opening. The following conclusions were drawn: (1) Among the four skywell shapes, the wind environment inside of the skywell was best in the HUI shape. (2) The wind environment inside of the skywell was best in the simulated skywell width-to-height ratio D/H values of 0.2–0.6; the AO shape D/H value was equal to 0.3; and the best wind environment in the skywell occurred when the D/H value of the HUI shape was equal to 0.4. (3) The wind environment in the skywell was best in the range of 1–1.5 for the aspect ratio W/L in the HUI-shaped building skywell (when the width-to-height D/H ratio was 0.4). (4) The opening of the door of the residential building had a great impact on the wind environment of the skywell.

Suggested Citation

  • Huanhuan Fang & Xiang Ji & Yun Chu & Lufeng Nie & Jianyuan Wang, 2023. "Study on Skywell Shape in Huizhou Traditional Architecture Based on Outdoor Wind Environment Simulation," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8270-:d:1150601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajapaksha, I. & Nagai, H. & Okumiya, M., 2003. "A ventilated courtyard as a passive cooling strategy in the warm humid tropics," Renewable Energy, Elsevier, vol. 28(11), pages 1755-1778.
    2. Liu, Yan & Yang, Liu & Hou, Liqiang & Li, Shiyang & Yang, Jian & Wang, Qiuwang, 2017. "A porous building approach for modelling flow and heat transfer around and inside an isolated building on night ventilation and thermal mass," Energy, Elsevier, vol. 141(C), pages 1914-1927.
    3. Al-Hemiddi, Nasser A & Megren Al-Saud, Khalid A, 2001. "The effect of a ventilated interior courtyard on the thermal performance of a house in a hot–arid region," Renewable Energy, Elsevier, vol. 24(3), pages 581-595.
    4. Zou Huifen & Fei Yingchao & Yang Fuhua & Tang Hao & Zhang Ying & Ye Sheng, 2013. "Mathematical Modeling of Double-Skin Facade in Northern Area of China," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
    2. Enrique Ángel Rodríguez Jara & Francisco José Sánchez de la Flor & Servando Álvarez Domínguez & José Manuel Salmerón Lissén & Alejandro Rincón Casado, 2017. "Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    3. Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
    4. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    5. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    6. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    7. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    8. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    9. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    10. Soflaei, Farzaneh & Shokouhian, Mehdi & Zhu, Wenyi, 2017. "Socio-environmental sustainability in traditional courtyard houses of Iran and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1147-1169.
    11. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    12. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    13. Guo, Rui & Hu, Yue & Heiselberg, Per & Johra, Hicham & Zhang, Chen & Peng, Pei, 2021. "Simulation and optimization of night cooling with diffuse ceiling ventilation and mixing ventilation in a cold climate," Renewable Energy, Elsevier, vol. 179(C), pages 488-501.
    14. Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Shi, Xing & Zhou, Xin, 2021. "A transient heat and moisture transfer model for building materials based on phase change criterion under isothermal and non-isothermal conditions," Energy, Elsevier, vol. 224(C).
    15. İdil Ayçam & Sevilay Akalp & Leyla Senem Görgülü, 2020. "The Application of Courtyard and Settlement Layouts of the Traditional Diyarbakır Houses to Contemporary Houses: A Case Study on the Analysis of Energy Performance," Energies, MDPI, vol. 13(3), pages 1-17, January.
    16. Dervishi, Sokol & Baçi, Nerina, 2023. "Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe," Energy, Elsevier, vol. 269(C).
    17. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    18. Hao Sun & Carlos Jimenez-Bescos & Murtaza Mohammadi & Fangliang Zhong & John Kaiser Calautit, 2021. "Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates," Energies, MDPI, vol. 14(17), pages 1-25, August.
    19. Sun, Xiaoqin & Jovanovic, Jovana & Zhang, Yuan & Fan, Siyuan & Chu, Youhong & Mo, Yajing & Liao, Shuguang, 2019. "Use of encapsulated phase change materials in lightweight building walls for annual thermal regulation," Energy, Elsevier, vol. 180(C), pages 858-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8270-:d:1150601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.