IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp486-497.html
   My bibliography  Save this article

Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change

Author

Listed:
  • Taleghani, Mohammad
  • Tenpierik, Martin
  • van den Dobbelsteen, Andy

Abstract

With increased global concerns on climate change, the need for innovative spaces which can provide thermal comfort and energy efficiency is also increasing. This paper analyses the effects of transitional spaces on energy performance and indoor thermal comfort of low-rise dwellings in the Netherlands, at present and projected in 2050. For this analysis the four climate scenarios for 2050 from the Royal Dutch Meteorological Institute (KNMI) were used. Including a courtyard within a Dutch terraced dwelling on the one hand showed an increase in annual heating energy demand but on the other hand a decrease in the number of summer discomfort hours. An atrium integrated into a Dutch terraced dwelling reduced the heating demand but increased the number of discomfort hours in summer. Analysing the monthly energy performance, comfort hours and the climate scenarios indicated that using an open courtyard May through October and an atrium, i.e. a covered courtyard, in the rest of the year establishes an optimum balance between energy use and summer comfort for the severest climate scenario.

Suggested Citation

  • Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:486-497
    DOI: 10.1016/j.renene.2013.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajapaksha, I. & Nagai, H. & Okumiya, M., 2003. "A ventilated courtyard as a passive cooling strategy in the warm humid tropics," Renewable Energy, Elsevier, vol. 28(11), pages 1755-1778.
    2. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    3. Short, C.A. & Cook, M.J. & Woods, A., 2009. "Low energy ventilation and cooling within an urban heat island," Renewable Energy, Elsevier, vol. 34(9), pages 2022-2029.
    4. Filippín, C. & Flores Larsen, S., 2012. "Summer thermal behaviour of compact single family housing in a temperate climate in Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3439-3455.
    5. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    6. Al-Hemiddi, Nasser A & Megren Al-Saud, Khalid A, 2001. "The effect of a ventilated interior courtyard on the thermal performance of a house in a hot–arid region," Renewable Energy, Elsevier, vol. 24(3), pages 581-595.
    7. Ayoob, A.N. & Izard, J.L., 1994. "Study of comfort in atrium design," Renewable Energy, Elsevier, vol. 5(5), pages 1002-1005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    2. Janusz Marchwiński & Agnieszka Starzyk & Ołeksij Kopyłow & Karolina Kurtz-Orecka, 2023. "Impact of Atrium Glazing with and without BIPV on Energy Performance of the Low-Rise Building: A Central European Case Study," Energies, MDPI, vol. 16(12), pages 1-25, June.
    3. Jian Zheng & Haitao Zhang & Zhonghui Liu & Bohong Zheng, 2024. "Research on Microclimate Performance Simulation Application and Scheme Optimization in Traditional Neighborhood Renewal—A Case Study of Donghuali District, Foshan City," Sustainability, MDPI, vol. 16(5), pages 1-27, February.
    4. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Huishu Chen & Zheng Tan & Piman Sun, 2024. "Research on Wind Environment Simulation in Five Types of “Gray Spaces” in Traditional Jiangnan Gardens, China," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    6. Dimitra V Chondrogianni & Yorgos J Stephanedes, 2024. "Assessment of the Bioclimatic Index for resilient urban spaces in Mediterranean cities," Environment and Planning B, , vol. 51(1), pages 234-258, January.
    7. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    8. Acosta, Ignacio & Varela, Carmen & Molina, Juan Francisco & Navarro, Jaime & Sendra, Juan José, 2018. "Energy efficiency and lighting design in courtyards and atriums: A predictive method for daylight factors," Applied Energy, Elsevier, vol. 211(C), pages 1216-1228.
    9. Tiantian Du & Sabine Jansen & Michela Turrin & Andy van den Dobbelsteen, 2020. "Effects of Architectural Space Layouts on Energy Performance: A Review," Sustainability, MDPI, vol. 12(5), pages 1-23, February.
    10. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    11. Moosavi, Leila & Mahyuddin, Norhayati & Ab Ghafar, Norafida & Azzam Ismail, Muhammad, 2014. "Thermal performance of atria: An overview of natural ventilation effective designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 654-670.
    12. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
    13. Habibi, Shahryar & Kamel, Ehsan & Memari, Ali M., 2024. "Design strategies for addressing COVID-19 issues in buildings," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    2. Shafaghat, Arezou & Keyvanfar, Ali & Abd. Majid, Muhd Zaimi & Lamit, Hasanuddin Bin & Ahmad, Mohd Hamdan & Ferwati, Mohamed Salim & Ghoshal, Sib Krishna, 2016. "Methods for adaptive behaviors satisfaction assessment with energy efficient building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 250-259.
    3. Enrique Ángel Rodríguez Jara & Francisco José Sánchez de la Flor & Servando Álvarez Domínguez & José Manuel Salmerón Lissén & Alejandro Rincón Casado, 2017. "Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    4. Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
    5. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    6. Huanhuan Fang & Xiang Ji & Yun Chu & Lufeng Nie & Jianyuan Wang, 2023. "Study on Skywell Shape in Huizhou Traditional Architecture Based on Outdoor Wind Environment Simulation," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    7. Claudia Valderrama-Ulloa & Lorena Silva-Castillo & Catalina Sandoval-Grandi & Carlos Robles-Calderon & Fabien Rouault, 2020. "Indoor Environmental Quality in Latin American Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    8. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    9. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    10. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    11. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    12. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    13. Wang, Nan & Wang, Julian & Feng, Yanxiao, 2022. "Systematic review: Acute thermal effects of artificial light in the daytime," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    15. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    16. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    17. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    18. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    19. Chih-Hong Huang & Hsin-Hua Tsai & Hung-chen Chen, 2020. "Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    20. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:486-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.