IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3950-d179267.html
   My bibliography  Save this article

Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions

Author

Listed:
  • Xiaodong Xu

    (School of Architecture, Southeast University, 2 Sipailou, Nanjing 210018, China)

  • Fenlan Luo

    (Tus-Design Group Co., Ltd., 9 Xinghai Street, Suzhou Industrial Park, Suzhou 215028, China)

  • Wei Wang

    (School of Architecture, Southeast University, 2 Sipailou, Nanjing 210018, China)

  • Tianzhen Hong

    (Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA)

  • Xiuzhang Fu

    (School of Architecture, Southeast University, 2 Sipailou, Nanjing 210018, China)

Abstract

A courtyard is a traditional and popular construction feature found in China’s urban buildings. This case study evaluates the performance of the traditional courtyard design of the Jiangnan Museum, located in Jiangsu Province. In the evaluation, the spatial layout of courtyards is adjusted, the aspect ratio is changed, and an ecological buffer space is created. To model and evaluate the performance of the courtyard design, this study applied the Computational fluid dynamics (CFD) software, Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series (PHOENICS), for wind environment simulation, and the EnergyPlus-based software, DesignBuilder, for energy simulation. Results show that a good combination of courtyard layout and aspect ratio can improve the use of natural ventilation by increasing free cooling during hot summers and reducing cold wind in winters. The results also show that ecological buffer areas of a courtyard can reduce cooling loads in summer by approximately 19.6% and heating loads in winter by approximately 22.3%. The study provides insights into the optimal design of a courtyard to maximize its benefit in regulating the microclimate during both winter and summer.

Suggested Citation

  • Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3950-:d:179267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajapaksha, I. & Nagai, H. & Okumiya, M., 2003. "A ventilated courtyard as a passive cooling strategy in the warm humid tropics," Renewable Energy, Elsevier, vol. 28(11), pages 1755-1778.
    2. Cantón, María Alicia & Ganem, Carolina & Barea, Gustavo & Llano, Jorge Fernández, 2014. "Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building," Renewable Energy, Elsevier, vol. 69(C), pages 437-446.
    3. Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Du & Sabine Jansen & Michela Turrin & Andy van den Dobbelsteen, 2020. "Effects of Architectural Space Layouts on Energy Performance: A Review," Sustainability, MDPI, vol. 12(5), pages 1-23, February.
    2. Xiaodong Xu & Chenhuan Yin & Wei Wang & Ning Xu & Tianzhen Hong & Qi Li, 2019. "Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    3. M'Saouri El Bat, Adnane & Romani, Zaid & Bozonnet, Emmanuel & Draoui, Abdeslam & Allard, Francis, 2023. "Optimizing urban courtyard form through the coupling of outdoor zonal approach and building energy modeling," Energy, Elsevier, vol. 264(C).
    4. Tao Zhang & Qinian Hu & Qi Ding & Dian Zhou & Weijun Gao & Hiroatsu Fukuda, 2021. "Towards a Rural Revitalization Strategy for the Courtyard Layout of Vernacular Dwellings Based on Regional Adaptability and Outdoor Thermal Performance in the Gully Regions of the Loess Plateau, China," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    5. Xiaoyu Ying & Yanling Wang & Wenzhe Li & Ziqiao Liu & Grace Ding, 2020. "Group Layout Pattern and Outdoor Wind Environment of Enclosed Office Buildings in Hangzhou," Energies, MDPI, vol. 13(2), pages 1-16, January.
    6. Shimeng Hao & Changming Yu & Yuejia Xu & Yehao Song, 2019. "The Effects of Courtyards on the Thermal Performance of a Vernacular House in a Hot-Summer and Cold-Winter Climate," Energies, MDPI, vol. 12(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    2. Hao Sun & Carlos Jimenez-Bescos & Murtaza Mohammadi & Fangliang Zhong & John Kaiser Calautit, 2021. "Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates," Energies, MDPI, vol. 14(17), pages 1-25, August.
    3. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    4. Soflaei, Farzaneh & Shokouhian, Mehdi & Zhu, Wenyi, 2017. "Socio-environmental sustainability in traditional courtyard houses of Iran and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1147-1169.
    5. Enrique Ángel Rodríguez Jara & Francisco José Sánchez de la Flor & Servando Álvarez Domínguez & José Manuel Salmerón Lissén & Alejandro Rincón Casado, 2017. "Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    6. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    7. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    8. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    9. Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
    10. Friess, Wilhelm A. & Rakhshan, Kambiz, 2017. "A review of passive envelope measures for improved building energy efficiency in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 485-496.
    11. Casini, Marco, 2020. "A positive energy building for the Middle East climate: ReStart4Smart Solar House at Solar Decathlon Middle East 2018," Renewable Energy, Elsevier, vol. 159(C), pages 1269-1296.
    12. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    13. Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    14. Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
    15. Dervishi, Sokol & Baçi, Nerina, 2023. "Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe," Energy, Elsevier, vol. 269(C).
    16. Huanhuan Fang & Xiang Ji & Yun Chu & Lufeng Nie & Jianyuan Wang, 2023. "Study on Skywell Shape in Huizhou Traditional Architecture Based on Outdoor Wind Environment Simulation," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    17. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
    18. Ivan Julio Apolonio Callejas & Luciane Cleonice Durante & Eduardo Diz-Mellado & Carmen Galán-Marín, 2020. "Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    19. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3950-:d:179267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.