IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp734-750.html
   My bibliography  Save this article

Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method

Author

Listed:
  • Lin, Boqiang
  • Chen, Xing

Abstract

The implementation of Increasing Block Electricity Prices (IBEPs) aims to guide residents towards electricity savings and rational energy use, but there are questions over the effectiveness of the IBEPs to achieve these goals. To this end, this paper uses residential IBEPs policy implemented in Sichuan Province of China in 2006 as a natural experiment to answer the question of whether IBEPs effectively regulate residents’ electricity demand. Synthetic control method (SCM) was used to evaluate the treatment effect of the policy. The paper finds that the IBEPs policy significantly reduces urban and rural residential electricity consumption. The per capita electricity consumption of urban residents fell by 26.87–100.76 kWh/year with an average of 51.40 kWh/year, equivalent to a decrease of 5.93%–17.50% and average of 11.17%. On the other hand, the per capita electricity consumption of rural residents decreased by 20.86–48.28 kWh/year with an average of 26.28 kWh/year, which is equivalent of a decreased of 7.8%–16.79% and average of 12.75%. Electricity demand in urban areas decreased more than in rural areas, but rural residents are more sensitive to IBEPs than urban residents. In order to achieve “equity” and “efficiency”, China needs to further improve the design mechanism of residential IBEPs.

Suggested Citation

  • Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:734-750
    DOI: 10.1016/j.energy.2018.08.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herriges, Joseph A. & King, K.A., 1994. "Residential Demand for Electricity Under Block Rate Structures: Evidence from a Controlled Experiment," Staff General Research Papers Archive 1498, Iowa State University, Department of Economics.
    2. Wodon, Quentin & Ajwad, Mohamed Ishan & Siaens, Corinne, 2003. "Lifeline or Means-Testing? Electric Utility Subsidies in Honduras," MPRA Paper 15419, University Library of Munich, Germany.
    3. Hung, Ming-Feng & Huang, Tai-Hsin, 2015. "Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing," Energy Economics, Elsevier, vol. 48(C), pages 168-177.
    4. Baerenklau, Kenneth A. & Schwabe, Kurt & Dinar, Ariel, 2014. "Do Increasing Block Rate Water Budgets Reduce Residential Water Demand? A Case Study in Southern California," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170019, Agricultural and Applied Economics Association.
    5. Sarah Bohn & Magnus Lofstrom & Steven Raphael, 2014. "Did the 2007 Legal Arizona Workers Act Reduce the State's Unauthorized Immigrant Population?," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 258-269, May.
    6. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2011. "Panel Data Analysis Of Japanese Residential Water Demand Using A Discrete/Continuous Choice Approach," The Japanese Economic Review, Japanese Economic Association, vol. 62(3), pages 365-386, September.
    7. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
    8. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    9. H. Allen Klaiber & V. Kerry Smith & Michael Kaminsky & Aaron Strong, 2014. "Measuring Price Elasticities for Residential Water Demand with Limited Information," Land Economics, University of Wisconsin Press, vol. 90(1), pages 100-113.
    10. Wichman, Casey J., 2014. "Perceived price in residential water demand: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 308-323.
    11. Olmstead, Sheila M., 2009. "Reduced-Form Versus Structural Models of Water Demand Under Nonlinear Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 84-94.
    12. He, Yongxiu & Jiao, Jie & Chen, Qian & Ge, Sifan & Chang, Yan & Xu, Yang, 2017. "Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin," Energy, Elsevier, vol. 133(C), pages 9-22.
    13. Andreas Billmeier & Tommaso Nannicini, 2013. "Assessing Economic Liberalization Episodes: A Synthetic Control Approach," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 983-1001, July.
    14. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    15. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    16. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    17. Lin, Boqiang & Jiang, Zhujun, 2012. "Designation and influence of household increasing block electricity tariffs in China," Energy Policy, Elsevier, vol. 42(C), pages 164-173.
    18. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    19. repec:ebl:ecbull:v:9:y:2007:i:4:p:1-7 is not listed on IDEAS
    20. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    21. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    22. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    23. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    24. Yoo, Seung-Hoon & Lee, Joo Suk & Kwak, Seung-Jun, 2007. "Estimation of residential electricity demand function in Seoul by correction for sample selection bias," Energy Policy, Elsevier, vol. 35(11), pages 5702-5707, November.
    25. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    26. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    27. Liao, Hua & Cao, Huai-Shu, 2018. "The pattern of electricity use in residential sector: The experiences from 133 economies," Energy, Elsevier, vol. 145(C), pages 515-525.
    28. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    29. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    30. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    31. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    32. Herriges, Joseph A & King, Kathleen Kuester, 1994. "Residential Demand for Electricity under Inverted Block Rates: Evidence from a Controlled Experiment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 419-430, October.
    33. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    34. Diego Angel-Urdinola & Quentin Wodon, 2007. "Do Utility Subsidies Reach the Poor? Framework and Evidence for Cape Verde, Sao Tome, and Rwanda," Economics Bulletin, AccessEcon, vol. 9(4), pages 1-7.
    35. Li, Weilin & Xu, Peng & Lu, Xing & Wang, Huilong & Pang, Zhihong, 2016. "Electricity demand response in China: Status, feasible market schemes and pilots," Energy, Elsevier, vol. 114(C), pages 981-994.
    36. Piet Rietveld & Jan Rouwendal & Bert Zwart, 2000. "Block Rate Pricing of Water in Indonesia: An Analysis of Welfare Effects," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 36(3), pages 73-92.
    37. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    38. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    39. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    40. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    41. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    42. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    43. repec:bla:devpol:v:25:y:2007:i:6:p:659-679 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiuyue Xia & Lu Li & Jie Dong & Bin Zhang, 2021. "Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    2. Lin, Boqiang & Kuang, Yunming, 2020. "Natural gas subsidies in the industrial sector in China: National and regional perspectives," Applied Energy, Elsevier, vol. 260(C).
    3. Zhipeng Tang & Wenming Song & Jialing Zou, 2022. "The Early Effect of Black Land Protection Plan in Northeast China on Industrial Pollution Using Synthetic Control Method," Land, MDPI, vol. 11(4), pages 1-15, April.
    4. Hu, Yuan & Kuhn, Lena & Zheng, Wenxue, 2021. "Promote or Inhibit?the Effects of Forest Carbon Sinks Projects on Agricultural Development: Evidence from Sichuan, China," 2021 Conference, August 17-31, 2021, Virtual 315381, International Association of Agricultural Economists.
    5. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    6. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    7. Che, Shuai & Wang, Jun, 2022. "Policy effectiveness of market-oriented energy reform: Experience from China energy-consumption permit trading scheme," Energy, Elsevier, vol. 261(PB).
    8. Tomasi, Silvia, 2022. "The (Non) impact of the Spanish “Tax on the Sun” on photovoltaics prosumers uptake," Energy Policy, Elsevier, vol. 168(C).
    9. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    10. Lin, Boqiang & Lan, Tianxu, 2023. "Progress of increasing-block electricity pricing policy implementation in China's first-tier cities and the impact of resident policy perception," Energy Policy, Elsevier, vol. 177(C).
    11. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    12. Yuanping Wang & Weiguang Cai & Lingchun Hou & Zhaoyin Zhou & Jing Bian, 2022. "Examining the Provincial-Level Difference and Impact Factors of Urban Household Electricity Consumption in China—Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    13. Lin, Boqiang & Kuang, Yunming, 2020. "Household heterogeneity impact of removing energy subsidies in China: Direct and indirect effect," Energy Policy, Elsevier, vol. 147(C).
    14. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    15. Li, Lanlan & Ming, Huayang & Fu, Weizhong & Shi, Quan & Yu, Shiwei, 2021. "Exploring household natural gas consumption patterns and their influencing factors: An integrated clustering and econometric method," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    2. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    3. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    4. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    5. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    6. Wu, Ya & Zhang, Li, 2017. "Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents," Energy Policy, Elsevier, vol. 109(C), pages 208-217.
    7. Brandli Stitzel & Cynthia L. Rogers, 2022. "Residential Water Demand Under Increasing Block Rate Structure: Conservation Conundrum?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 203-218, January.
    8. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    9. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    10. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    11. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    12. Wichman, Casey, 2024. "Efficiency, Equity, and Cost-Recovery Trade-Offs in Municipal Water Pricing," RFF Working Paper Series 24-18, Resources for the Future.
    13. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    14. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    15. Ming-Feng Hung & Bin-Tzong Chie & Huei-Chu Liao, 2020. "A Comparison of Electricity-Pricing Programs: Economic Efficiency, Cost Recovery, and Income Distribution," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 143-163, February.
    16. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    17. Li, Yao & Fan, Jin & Zhao, Dingtao & Wu, Yanrui & Li, Jun, 2016. "Tiered gasoline pricing: A personal carbon trading perspective," Energy Policy, Elsevier, vol. 89(C), pages 194-201.
    18. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    19. Kim, Hyun-gyu, 2019. "Estimating demand response in an extreme block pricing environment: Evidence from Korea's electricity pricing system, 2005–2014," Energy Policy, Elsevier, vol. 132(C), pages 1076-1086.
    20. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:734-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.