IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5668-d810770.html
   My bibliography  Save this article

A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System

Author

Listed:
  • Nandakumar Sundararaju

    (Department of Electrical and Electronics Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India)

  • Arangarajan Vinayagam

    (Department of Electrical and Electronics Engineering, New Horizon College of Engineering, Bengaluru 560103, India)

  • Veerapandiyan Veerasamy

    (School of Electrical and Electronic Engineering, College of Engineering, Nanyang Technological University, Nanyang, Singapore 639798, Singapore)

  • Gunasekaran Subramaniam

    (Department of Electrical and Electronics Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India)

Abstract

In this work, a chaotic search-based hybrid Sperm Swarm Optimized-Gravitational Search Algorithm (CSSO-GSA) is proposed for automatic load frequency control (ALFC) of a hybrid power system (HPS). The HPS model is developed using multiple power sources (thermal, bio-fuel, and renewable energy (RE)) that generate power to balance the system’s demand. To regulate the frequency of the system, the control parameters of the proportional-integral-derivative (PID) controller for ALFC are obtained by minimizing the integral time absolute error of HPS. The effectiveness of the proposed technique is verified with various combinations of power sources (all sources, thermal with bio-fuel, and thermal with RE) connected into the system. Further, the robustness of the proposed technique is investigated by performing a sensitivity analysis considering load variation and weather intermittency of RE sources in real-time. However, the type of RE source does not have any severe impact on the controller but the uncertainties present in RE power generation required a robust controller. In addition, the effectiveness of the proposed technique is validated with comparative and stability analysis. The results show that the proposed CSSO-GSA strategy outperforms the SSO, GSA, and hybrid SSO-GSA methods in terms of steady-state and transient performance indices. According to the results of frequency control optimization, the main performance indices such as settling time (ST) and integral time absolute error (ITAE) are significantly improved by 60.204% and 40.055% in area 1 and 57.856% and 39.820% in area 2, respectively, with the proposed CSSO-GSA control strategy compared to other existing control methods.

Suggested Citation

  • Nandakumar Sundararaju & Arangarajan Vinayagam & Veerapandiyan Veerasamy & Gunasekaran Subramaniam, 2022. "A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System," Sustainability, MDPI, vol. 14(9), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5668-:d:810770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Mokhtar & Mostafa I. Marei & Mariam A. Sameh & Mahmoud A. Attia, 2022. "An Adaptive Load Frequency Control for Power Systems with Renewable Energy Sources," Energies, MDPI, vol. 15(2), pages 1-22, January.
    2. Raffay Rizwan & Jehangir Arshad & Ahmad Almogren & Mujtaba Hussain Jaffery & Adnan Yousaf & Ayesha Khan & Ateeq Ur Rehman & Muhammad Shafiq, 2021. "Implementation of ANN-Based Embedded Hybrid Power Filter Using HIL-Topology with Real-Time Data Visualization through Node-RED," Energies, MDPI, vol. 14(21), pages 1-33, November.
    3. Arya, Yogendra, 2017. "AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries," Energy, Elsevier, vol. 127(C), pages 704-715.
    4. Hisham A. Shehadeh & Mohd Yamani Idna Idris & Ismail Ahmedy & Roziana Ramli & Noorzaily Mohamed Noor, 2018. "The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications," Energies, MDPI, vol. 11(1), pages 1-35, January.
    5. dos Santos Coelho, Leandro, 2009. "Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1504-1514.
    6. Veerapandiyan Veerasamy & Noor Izzri Abdul Wahab & Rajeswari Ramachandran & Arangarajan Vinayagam & Mohammad Lutfi Othman & Hashim Hizam & Jeevitha Satheeshkumar, 2019. "Automatic Load Frequency Control of a Multi-Area Dynamic Interconnected Power System Using a Hybrid PSO-GSA-Tuned PID Controller," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    2. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    3. Wei Fan & Zhijian Hu & Veerapandiyan Veerasamy, 2022. "PSO-Based Model Predictive Control for Load Frequency Regulation with Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    4. Aurobindo Behera & Subhranshu Sekhar Pati & Umamani Subudhi & Subhankar Ghatak & Tapas Kumar Panigrahi & Mohammed H. Alsharif & Syed Mohsan, 2022. "Frequency Stability Analysis of Multi-Renewable Source System with Cascaded PDN-FOPI Controller," Sustainability, MDPI, vol. 14(20), pages 1-37, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    2. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    3. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    4. Obadah Said Solaiman & Rami Sihwail & Hisham Shehadeh & Ishak Hashim & Kamal Alieyan, 2023. "Hybrid Newton–Sperm Swarm Optimization Algorithm for Nonlinear Systems," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    5. Abdelhakim Idir & Laurent Canale & Yassine Bensafia & Khatir Khettab, 2022. "Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(23), pages 1-20, November.
    6. Meihua Wang & Wei-Chang Yeh & Ta-Chung Chu & Xianyong Zhang & Chia-Ling Huang & Jun Yang, 2018. "Solving Multi-Objective Fuzzy Optimization in Wireless Smart Sensor Networks under Uncertainty Using a Hybrid of IFR and SSO Algorithm," Energies, MDPI, vol. 11(9), pages 1-23, September.
    7. Tian Ji & Haoran Wei & Jun Wang & Shaoqing Tian & Yi Yao & Shukai Hu, 2023. "Research into the Beetle Antennae Optimization-Based PID Servo System Control of an Industrial Robot," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    8. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    9. Wenying Li & Ming Tang & Xinzhen Zhang & Danhui Gao & Jian Wang, 2022. "Optimal Operation for Regional IES Considering the Demand- and Supply-Side Characteristics," Energies, MDPI, vol. 15(4), pages 1-27, February.
    10. Arindita Saha & Puja Dash & Naladi Ram Babu & Tirumalasetty Chiranjeevi & Mudadla Dhananjaya & Łukasz Knypiński, 2022. "Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    11. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    12. Jikai Sun & Mingrui Chen & Linghe Kong & Zhijian Hu & Veerapandiyan Veerasamy, 2023. "Regional Load Frequency Control of BP-PI Wind Power Generation Based on Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-15, February.
    13. Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
    14. Awadh Ba Wazir & Ahmed Althobiti & Abdullah A. Alhussainy & Sultan Alghamdi & Mahendiran Vellingiri & Thangam Palaniswamy & Muhyaddin Rawa, 2024. "A Comparative Study of Load Frequency Regulation for Multi-Area Interconnected Grids Using Integral Controller," Sustainability, MDPI, vol. 16(9), pages 1-50, May.
    15. Wei Fan & Zhijian Hu & Veerapandiyan Veerasamy, 2022. "PSO-Based Model Predictive Control for Load Frequency Regulation with Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    16. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    17. Balvinder Singh & Adam Slowik & Shree Krishna Bishnoi, 2022. "A Dual-Stage Controller for Frequency Regulation in a Two-Area Realistic Diverse Hybrid Power System Using Bull–Lion Optimization," Energies, MDPI, vol. 15(21), pages 1-24, October.
    18. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    19. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    20. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5668-:d:810770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.