IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p573-d724268.html
   My bibliography  Save this article

An Adaptive Load Frequency Control for Power Systems with Renewable Energy Sources

Author

Listed:
  • Mohamed Mokhtar

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mostafa I. Marei

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mariam A. Sameh

    (Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt)

  • Mahmoud A. Attia

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.

Suggested Citation

  • Mohamed Mokhtar & Mostafa I. Marei & Mariam A. Sameh & Mahmoud A. Attia, 2022. "An Adaptive Load Frequency Control for Power Systems with Renewable Energy Sources," Energies, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:573-:d:724268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/573/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandakumar Sundararaju & Arangarajan Vinayagam & Veerapandiyan Veerasamy & Gunasekaran Subramaniam, 2022. "A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System," Sustainability, MDPI, vol. 14(9), pages 1-27, May.
    2. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Jikai Sun & Mingrui Chen & Linghe Kong & Zhijian Hu & Veerapandiyan Veerasamy, 2023. "Regional Load Frequency Control of BP-PI Wind Power Generation Based on Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-15, February.
    4. Awadh Ba Wazir & Ahmed Althobiti & Abdullah A. Alhussainy & Sultan Alghamdi & Mahendiran Vellingiri & Thangam Palaniswamy & Muhyaddin Rawa, 2024. "A Comparative Study of Load Frequency Regulation for Multi-Area Interconnected Grids Using Integral Controller," Sustainability, MDPI, vol. 16(9), pages 1-50, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:573-:d:724268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.