IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p97-d125152.html
   My bibliography  Save this article

The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications

Author

Listed:
  • Hisham A. Shehadeh

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Mohd Yamani Idna Idris

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Ismail Ahmedy

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Roziana Ramli

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Noorzaily Mohamed Noor

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

Prior studies in Wireless Sensor Network (WSN) optimization mostly concentrate on maximizing network coverage and minimizing network energy consumption. However, there are other factors that could affect the WSN Quality of Service (QoS). In this paper, four objective functions that affect WSN QoS, namely end-to-end delay, end-to-end latency, network throughput and energy efficiency are studied. Optimal value of packet payload size that is able to minimize the end-to-end delay and end-to-end latency, while also maximizing the network throughput and energy efficiency is sought. To do this, a smart grid application case study together with a WSN QoS model is used to find the optimal value of the packet payload size. Our proposed method, named Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP), along with other three state-of-the-art multi-objective optimization algorithms known as OMOPSO, NSGA-II and SPEA2, are utilized in this study. Different packet payload sizes are supplied to the algorithms and their optimal value is derived. From the experiments, the knee point and the intersection point of all the obtained Pareto fronts for all the algorithms show that the optimal packet payload size that manages the trade-offs between the four objective functions is equal to 45 bytes. The results also show that the performance of our proposed MOSFP method is highly competitive and found to have the best average value compared to the other three algorithms. Furthermore, the overall performance of MOSFP on four objective functions outperformed OMOPSO, NSGA-II and SPEA2 by 3%, 6% and 51%, respectively.

Suggested Citation

  • Hisham A. Shehadeh & Mohd Yamani Idna Idris & Ismail Ahmedy & Roziana Ramli & Noorzaily Mohamed Noor, 2018. "The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications," Energies, MDPI, vol. 11(1), pages 1-35, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:97-:d:125152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    2. J�r�me Massiani & Gabriele Picco, 2014. "The opportunity costs of public funds concepts and issues," Working Papers 2014:20, Department of Economics, University of Venice "Ca' Foscari".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandakumar Sundararaju & Arangarajan Vinayagam & Veerapandiyan Veerasamy & Gunasekaran Subramaniam, 2022. "A Chaotic Search-Based Hybrid Optimization Technique for Automatic Load Frequency Control of a Renewable Energy Integrated Power System," Sustainability, MDPI, vol. 14(9), pages 1-27, May.
    2. Obadah Said Solaiman & Rami Sihwail & Hisham Shehadeh & Ishak Hashim & Kamal Alieyan, 2023. "Hybrid Newton–Sperm Swarm Optimization Algorithm for Nonlinear Systems," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    3. Meihua Wang & Wei-Chang Yeh & Ta-Chung Chu & Xianyong Zhang & Chia-Ling Huang & Jun Yang, 2018. "Solving Multi-Objective Fuzzy Optimization in Wireless Smart Sensor Networks under Uncertainty Using a Hybrid of IFR and SSO Algorithm," Energies, MDPI, vol. 11(9), pages 1-23, September.
    4. Zi-Jia Wang & Zhi-Hui Zhan & Jun Zhang, 2018. "Solving the Energy Efficient Coverage Problem in Wireless Sensor Networks: A Distributed Genetic Algorithm Approach with Hierarchical Fitness Evaluation," Energies, MDPI, vol. 11(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh S., 2018. "Transactive Energy Design for Integrated Transmission and Distribution Systems," ISU General Staff Papers 201802280800001000, Iowa State University, Department of Economics.
    3. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    4. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    5. Kristensen, Søren Rud & Siciliani, Luigi & Sutton, Matt, 2016. "Optimal price-setting in pay for performance schemes in health care," Journal of Economic Behavior & Organization, Elsevier, vol. 123(C), pages 57-77.
    6. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    7. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    8. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    9. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    10. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    11. Siewierski, Tomasz & Szypowski, Michał & Wędzik, Andrzej, 2018. "A review of economic aspects of voltage control in LV smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 37-45.
    12. Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.
    13. Asfandyar Khan & Arif Iqbal Umar & Arslan Munir & Syed Hamad Shirazi & Muazzam A. Khan & Muhammad Adnan, 2021. "A QoS-Aware Machine Learning-Based Framework for AMI Applications in Smart Grids," Energies, MDPI, vol. 14(23), pages 1-22, December.
    14. Jérôme Massiani, 2020. "Towards Improved Guidelines for Cost–Benefit Analysis of Sport and Cultural Events," Economic Papers, The Economic Society of Australia, vol. 39(3), pages 270-289, September.
    15. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    16. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    17. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    18. Chen-Yu Chang & Pei-Fang Tsai, 2022. "Multiobjective Decision-Making Model for Power Scheduling Problem in Smart Homes," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    19. Azar, Elie & Alaifan, Bader & Lin, Min & Trepci, Esra & El Asmar, Mounir, 2021. "Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach," Energy Policy, Elsevier, vol. 150(C).
    20. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:97-:d:125152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.