IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5104-d800593.html
   My bibliography  Save this article

A Hybrid Spatiotemporal Deep Model Based on CNN and LSTM for Air Pollution Prediction

Author

Listed:
  • Stefan Tsokov

    (Faculty of Computer Systems and Technologies, Technical University of Sofia, 1000 Sofia, Bulgaria)

  • Milena Lazarova

    (Faculty of Computer Systems and Technologies, Technical University of Sofia, 1000 Sofia, Bulgaria)

  • Adelina Aleksieva-Petrova

    (Faculty of Computer Systems and Technologies, Technical University of Sofia, 1000 Sofia, Bulgaria)

Abstract

Nowadays, air pollution is an important problem with negative impacts on human health and on the environment. The air pollution forecast can provide important information to all affected sides, and allows appropriate measures to be taken. In order to address the problems of filling in the missing values in the time series used for air pollution forecasts, the automation of the allocation of optimal subset of input variables, the dependency of the air quality at a particular location on the conditions of the surrounding environment, as well as automation of the model’s optimization, this paper proposes a deep spatiotemporal model based on a 2D convolutional neural network and a long short-term memory network for predicting air pollution. The model utilizes the automatic selection of input variables and the optimization of hyperparameters by a genetic algorithm. A hybrid strategy for missing value imputation is used based on a combination of linear interpolation and a strategy of using the average between the previous value and the average value for the same time in other years. In order to determine the best architecture of the spatiotemporal model, the architecture hyperparameters are optimized by a genetic algorithm with a modified crossover operator for solutions with variable lengths. Additionally, the trained models are included in various ensembles in order to further improve the prediction performance—these include ensembles of models with the same architecture comprising the best architecture obtained by the evolutionary optimization, and ensembles of diverse models comprising the k best models of the evolutionary optimization. The experimental results for the Beijing Multi-Site Air-Quality Data Set show that the proposed spatiotemporal model for air pollution forecasting provides good and consistent prediction results. The comparison of the suggested model with other deep NN models shows satisfactory results, with the best performance according to MAE, based on the experimental results for the station at Wanliu (16.753 ± 0.384). Most of the model architectures obtained by the optimization of the model hyperparameters using the genetic algorithm have one convolutional layer with a small number of kernels and a small kernel size; the convolutional layers are followed by a max-pooling layer, and one or two LSTM layers are utilized with dropout regularization applied to the LSTM layer using small values of p (0.1, 0.2 and 0.3). The utilization of ensembles from the k best trained models further improves the prediction results and surpasses other deep learning models, according to MAE and RMSE metrics. The used hybrid strategy for missing value imputation enhances the results, especially for data with clear seasonality, and produces better MAE compared to the strategy using average values for the same hour of the same day and month in other years. The experimental results also reveal that random searching is a simple and effective strategy for selecting the input variables. Furthermore, the inclusion of spatial information in the model’s input data, based on the local neighborhood data, significantly improves the predictive results obtained with the model. The results obtained demonstrate the benefits of including spatial information from as many surrounding stations as possible, as well as using as much historical information as possible.

Suggested Citation

  • Stefan Tsokov & Milena Lazarova & Adelina Aleksieva-Petrova, 2022. "A Hybrid Spatiotemporal Deep Model Based on CNN and LSTM for Air Pollution Prediction," Sustainability, MDPI, vol. 14(9), pages 1-38, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5104-:d:800593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    2. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    3. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umer Khalil & Umar Azam & Bilal Aslam & Israr Ullah & Aqil Tariq & Qingting Li & Linlin Lu, 2022. "Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    2. Hao Zhou & Tao Wang & Hongchao Zhao & Zicheng Wang, 2022. "Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    3. Seyd Teymoor Seydi & Reza Shah-Hosseini & Meisam Amani, 2022. "A Multi-Dimensional Deep Siamese Network for Land Cover Change Detection in Bi-Temporal Hyperspectral Imagery," Sustainability, MDPI, vol. 14(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Kadkhodazadeh & Saeed Farzin, 2022. "Introducing a Novel Hybrid Machine Learning Model and Developing its Performance in Estimating Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3901-3927, August.
    2. Xuecheng He & Jujie Wang, 2024. "A Hybrid Forecasting System Based on Comprehensive Feature Selection and Intelligent Optimization for Stock Price Index Forecasting," Mathematics, MDPI, vol. 12(23), pages 1-27, November.
    3. Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
    4. Mustafa Al-Mukhtar & Aman Srivastava & Leena Khadke & Tariq Al-Musawi & Ahmed Elbeltagi, 2024. "Prediction of Irrigation Water Quality Indices Using Random Committee, Discretization Regression, REPTree, and Additive Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 343-368, January.
    5. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    6. Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
    7. Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2021. "Forecasting the Artificial Intelligence Index Returns: A Hybrid Approach," Working Papers 202182, University of Pretoria, Department of Economics.
    8. Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    9. Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 61(C).
    10. Sufyan Ghani & Sunita Kumari, 2022. "Liquefaction behavior of Indo-Gangetic region using novel metaheuristic optimization algorithms coupled with artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2995-3029, April.
    11. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    12. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.
    13. Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).
    14. Mojtaba Poursaeid & Amir Houssain Poursaeid & Saeid Shabanlou, 2022. "A Comparative Study of Artificial Intelligence Models and A Statistical Method for Groundwater Level Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1499-1519, March.
    15. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    16. Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    17. Esteban Vanegas & Andrés Mora-Valencia, 2025. "Skew Index: a machine learning forecasting approach," Risk Management, Palgrave Macmillan, vol. 27(1), pages 1-60, January.
    18. Jingjing Xia & Jin Zeng, 2022. "Environmental Factors Assisted the Evaluation of Entropy Water Quality Indices with Efficient Machine Learning Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2045-2060, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5104-:d:800593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.