IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v280y2023ics0378377423000975.html
   My bibliography  Save this article

Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms

Author

Listed:
  • Di Nunno, Fabio
  • Granata, Francesco

Abstract

In years of increasing impact of climate change effects, a reliable characterization of the spatiotemporal evolutionary dynamics of evapotranspiration can enable a significant improvement in water resource management, especially as regards irrigation activities. Sicily, an insular region of Southern Italy, has exceptionally valuable agricultural production and high irrigation needs. In this study, the ETo reference evapotranspiration in Sicily was first evaluated on the basis of historical and future climate parameters, referring for future values to two climate scenarios characterized by different Representative Concentration Pathways: RCP 4.5 and RCP 8.5. Then, the Hierarchical algorithm was used to divide Sicily into three homogeneous regions, each characterized by specific ETo features. In addition, some Machine Learning (ML) algorithms were used to develop forecasting models based on only historical data. Support Vector Regression (SVR) was used to predict the future values of Tmin and Tmax, while an ensemble model based on Multilayer Perceptron (MLP) and M5P Regression Tree was developed for the ETo forecasting. Predictions made with the ensemble MLP-M5P model were compared with the ETo computed for the RCP 4.5 and RCP 8.5 future climate scenarios. During the forecast period, from 2001 to 2091, evapotranspiration increases were observed for all three clusters. For cluster C1, along the coast, percentage increases of 7.52%, 14.64% and 10.78%, were computed for RCP 4.5, RCP 8.5, and MLP-M5P, respectively, while, for cluster C3, in the inland, percentage increases were higher and equal to 8.12%, 16.71%, and 14.98%, respectively. The ensemble MLP-M5P model led to intermediate trends between RCP 4.5 and RCP 8.5, showing a high correlation with the latter (R2 between 0.93 and 0.98). The developed approach, based on both clustering and forecasting algorithms, provided a comprehensive analysis of the reference evapotranspiration, with the detection of the different homogeneous regions and, at the same time, the evaluation of the evapotranspiration trends, both in coastal and inland areas.

Suggested Citation

  • Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:agiwat:v:280:y:2023:i:c:s0378377423000975
    DOI: 10.1016/j.agwat.2023.108232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    2. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Fabio Di Nunno & Francesco Granata & Quoc Bao Pham & Giovanni de Marinis, 2022. "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    4. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    5. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    3. Zhang, Zeyu & Liang, Yushi & Xue, Xinyue & Li, Yan & Zhang, Mulan & Li, Yiran & Ji, Xiaodong, 2024. "China's future wind energy considering air density during climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    20. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:280:y:2023:i:c:s0378377423000975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.