IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v27y2025i1d10.1057_s41283-024-00152-6.html
   My bibliography  Save this article

Skew Index: a machine learning forecasting approach

Author

Listed:
  • Esteban Vanegas

    (Escuela de Negocios)

  • Andrés Mora-Valencia

    (Universidad de los Andes)

Abstract

The Skew Index originated in response to the Black Monday Crisis in 1987 to provide investors and regulators with a tool to gauge turbulence in the financial markets. Understanding and forecasting the Skew Index is crucial for anticipating market downturns and managing financial risk. This paper presented key descriptive statistics of the Skew Index, a topic not extensively covered in existing literature. Furthermore, we utilized a range of Deep Learning models—Dense, LSTM, GRU, CNN, and Hybrid-CNN—in both stand-alone configurations and with external variables to forecast the Index with daily data from April 1, 1997, to November 30, 2023. LASSO regression analysis was applied to select the most predictive exogenous variables for the index forecast. Our findings indicated that the Dense model provided an effective forecast for stand-alone models, while the CNN-LSTM model offered a superior forecast compared to other deep learning models when external variables were included. This research is novel in its application of neural network architectures to forecast the daily levels of the Skew Index, contributing to the field by providing a robust framework for financial market risk assessment and forecasting.

Suggested Citation

  • Esteban Vanegas & Andrés Mora-Valencia, 2025. "Skew Index: a machine learning forecasting approach," Risk Management, Palgrave Macmillan, vol. 27(1), pages 1-60, January.
  • Handle: RePEc:pal:risman:v:27:y:2025:i:1:d:10.1057_s41283-024-00152-6
    DOI: 10.1057/s41283-024-00152-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-024-00152-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-024-00152-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 333-376.
    3. Mahmod Qadan & Joseph Yagil, 2012. "Fear sentiments and gold price: testing causality in-mean and in-variance," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 363-366, March.
    4. Gomez-Gonzalez, Jose E. & Hirs-Garzon, Jorge & Gamboa-Arbelaez, Juliana, 2020. "Dynamic relations between oil and stock market returns: A multi-country study," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    5. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    6. Mierau, Jochen O. & Mink, Mark, 2013. "Are stock market crises contagious? The role of crisis definitions," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4765-4776.
    7. Hamid Baghestani, 2005. "Improving the Accuracy of Recent Survey Forecasts of the T-bill Rate," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 40(2), pages 36-40, April.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    10. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Erratum to Rejoinder on: Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 504-504.
    11. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
    12. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    13. Wenjie Lu & Jiazheng Li & Yifan Li & Aijun Sun & Jingyang Wang, 2020. "A CNN-LSTM-Based Model to Forecast Stock Prices," Complexity, Hindawi, vol. 2020, pages 1-10, November.
    14. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Rejoinder on: Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 418-426.
    15. Kamil Kashif & Robert 'Slepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Papers 2406.18206, arXiv.org.
    16. Spierdijk, Laura & Umar, Zaghum, 2015. "Stocks, bonds, T-bills and inflation hedging: From great moderation to great recession," Journal of Economics and Business, Elsevier, vol. 79(C), pages 1-37.
    17. Dick-Nielsen, Jens & Feldhütter, Peter & Lando, David, 2012. "Corporate bond liquidity before and after the onset of the subprime crisis," Journal of Financial Economics, Elsevier, vol. 103(3), pages 471-492.
    18. Kevin Fox, 1997. "White noise and other experiments on augmented Dickey-Fuller tests," Applied Economics Letters, Taylor & Francis Journals, vol. 4(11), pages 689-694.
    19. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    20. Qiutong Guo & Shun Lei & Qing Ye & Zhiyang Fang, 2021. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price," Papers 2105.00707, arXiv.org.
    21. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    22. Johnny Kang & Carolin E. Pflueger, 2015. "Inflation Risk in Corporate Bonds," Journal of Finance, American Finance Association, vol. 70(1), pages 115-162, February.
    23. Jan Grudniewicz & Robert Ślepaczuk, 2021. "Application of machine learning in quantitative investment strategies on global stock markets," Working Papers 2021-23, Faculty of Economic Sciences, University of Warsaw.
    24. Chuen Yik Kang & Chin Poo Lee & Kian Ming Lim, 2022. "Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit," Data, MDPI, vol. 7(11), pages 1-13, October.
    25. Mora-Valencia, Andrés & Rodríguez-Raga, Santiago & Vanegas, Esteban, 2021. "Skew index: Descriptive analysis, predictive power, and short-term forecast," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    26. Hassani, Hossein & Yeganegi, Mohammad Reza, 2020. "Selecting optimal lag order in Ljung–Box test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ergun, Lerby M., 2023. "Extreme downside risk in the cross-section of asset returns," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Serrano, Pedro & Vaello-Sebastià, Antoni & Vich-Llompart, M. Magdalena, 2024. "The international linkages of market risk perception," Journal of Multinational Financial Management, Elsevier, vol. 72(C).
    3. Cao, Ji & Rieger, Marc Oliver & Zhao, Lei, 2023. "Safety first, loss probability, and the cross section of expected stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 345-369.
    4. Bevilacqua, Mattia & Tunaru, Radu, 2021. "The SKEW index: extracting what has been left," LSE Research Online Documents on Economics 108198, London School of Economics and Political Science, LSE Library.
    5. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan & Gabauer, David, 2022. "Forecasting stock-market tail risk and connectedness in advanced economies over a century: The role of gold-to-silver and gold-to-platinum price ratios," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Prodosh Simlai, 2021. "Accrual mispricing, value-at-risk, and expected stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 57(4), pages 1487-1517, November.
    7. Todorov, Viktor, 2022. "Nonparametric jump variation measures from options," Journal of Econometrics, Elsevier, vol. 230(2), pages 255-280.
    8. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
    9. Schneider, Paul, 2019. "An anatomy of the market return," Journal of Financial Economics, Elsevier, vol. 132(2), pages 325-350.
    10. Bevilacqua, Mattia & Tunaru, Radu, 2021. "The SKEW index: Extracting what has been left," Journal of Financial Stability, Elsevier, vol. 53(C).
    11. Gupta, Rangan & Sheng, Xin & Pierdzioch, Christian & Ji, Qiang, 2021. "Disaggregated oil shocks and stock-market tail risks: Evidence from a panel of 48 economics," Research in International Business and Finance, Elsevier, vol. 58(C).
    12. K. Victor Chow & Wanjun Jiang & Bingxin Li & Jingrui Li, 2020. "Decomposing the VIX: Implications for the predictability of stock returns," The Financial Review, Eastern Finance Association, vol. 55(4), pages 645-668, November.
    13. Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    15. Qian, Lihua & Zeng, Qing & Lu, Xinjie & Ma, Feng, 2022. "Global tail risk and oil return predictability," Finance Research Letters, Elsevier, vol. 47(PB).
    16. Daniel Felix Ahelegbey, 2022. "Statistical Modelling of Downside Risk Spillovers," FinTech, MDPI, vol. 1(2), pages 1-10, April.
    17. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
    18. Ahelegbey, Daniel Felix & Giudici, Paolo & Mojtahedi, Fatemeh, 2021. "Tail risk measurement in crypto-asset markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    19. Almeida, Caio & Ardison, Kym & Garcia, René, 2020. "Nonparametric assessment of hedge fund performance," Journal of Econometrics, Elsevier, vol. 214(2), pages 349-378.
    20. Fatemeh Mojtahedi & Seyed Mojtaba Mojaverian & Daniel F. Ahelegbey & Paolo Giudici, 2020. "Tail Risk Transmission: A Study of the Iran Food Industry," Risks, MDPI, vol. 8(3), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:27:y:2025:i:1:d:10.1057_s41283-024-00152-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.