IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p356-d1015190.html
   My bibliography  Save this article

Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network

Author

Listed:
  • Hao Zhou

    (College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    These authors contributed equally to this work.)

  • Tao Wang

    (School of Astronautics, Harbin Institute of Technology, Harbin 150080, China
    These authors contributed equally to this work.)

  • Hongchao Zhao

    (College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    These authors contributed equally to this work.)

  • Zicheng Wang

    (College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

The WRF-CMAQ (Weather research and forecast-community multiscale air quality) simulation system is commonly used as the first prediction model of air pollutant concentration, but its prediction accuracy is not ideal. Considering the complexity of air quality prediction and the high-performance advantages of deep learning methods, this paper proposes a second prediction method of air pollutant concentration based on the Kalman-attention-LSTM (Kalman filter, attention and long short-term memory) model. Firstly, an exploratory analysis is made between the actual environmental measurement data from the monitoring site and the first forecast data from the WRF-CMAQ model. An air quality index (AQI) was used as a measure of air pollution degree. Then, the Kalman filter (KF) is used to fuse the actual environmental measurement data from the monitoring site and the first forecast results from the WRF-CMAQ model. Finally, the long short-term memory (LSTM) model with the attention mechanism is used as a single factor prediction model for an AQI prediction. In the prediction of O 3 which is the main pollutant affecting the AQI, the results show that the second prediction based on the Kalman-attention-LSTM model features a better fitting effect, compared with the six models. In the first prediction (from the WRF-CMAQ model), for the RNN, GRU, LSTM, attention-LSTM and Kalman-LSTM, SE improved by 83.26%, 51.64%, 43.58%, 45%, 26% and 29%, respectively, RMSE improved by 83.16%, 51.52%, 43.21%, 44.59%, 26.07% and 28.32%, respectively, MAE improved by 80.49%, 56.96%, 46.75%, 49.97%, 26.04% and 27.36%, respectively, and R-Square improved by 85.3%, 16.4%, 10.3%, 11.5%, 2.7% and 3.3%, respectively. However, the prediction results for the Kalman-attention-LSTM model proposed in this paper for other five different pollutants (SO 2 , NO 2 , PM 10 , PM 2.5 and CO) all have smaller SE, RMSE and MAE, and better R-square. The accuracy improvement is significant and has good application prospects.

Suggested Citation

  • Hao Zhou & Tao Wang & Hongchao Zhao & Zicheng Wang, 2022. "Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:356-:d:1015190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tsokov & Milena Lazarova & Adelina Aleksieva-Petrova, 2022. "A Hybrid Spatiotemporal Deep Model Based on CNN and LSTM for Air Pollution Prediction," Sustainability, MDPI, vol. 14(9), pages 1-38, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyd Teymoor Seydi & Reza Shah-Hosseini & Meisam Amani, 2022. "A Multi-Dimensional Deep Siamese Network for Land Cover Change Detection in Bi-Temporal Hyperspectral Imagery," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    2. Umer Khalil & Umar Azam & Bilal Aslam & Israr Ullah & Aqil Tariq & Qingting Li & Linlin Lu, 2022. "Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning," Sustainability, MDPI, vol. 14(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:356-:d:1015190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.