IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004566.html
   My bibliography  Save this article

Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis

Author

Listed:
  • Wang, Yue
  • Zha, Yuanyuan

Abstract

Accurate quantification of soil moisture is essential for understanding water and energy exchanges between the atmosphere and the Earth’s surface, as well as for agricultural applications. Predicting soil moisture content is vital for efficient water management, irrigation scheduling, and drought monitoring. Traditional forecasting methods, such as numerical regression models, often struggle due to various influencing factors and poor observation data quality. In contrast, deep learning algorithms, particularly recurrent and convolutional neural networks, show promise in predicting nonlinear data like soil moisture. This study focuses on shallow groundwater regions, using groundwater levels and meteorological data as features while coupling the Transformer model with other neural network structures. We investigate the potential of attention-based neural networks for soil moisture time series prediction. Our findings demonstrate that the Transformer model achieves an average R2 of 0.523 across different time lags, outperforming the LSTM model with an R2 of 0.485. The introduction of LSTM enhances the Transformer’s stability in handling temporal changes. Additionally, we verified the importance of groundwater for soil moisture prediction. This study introduces new methods for soil moisture prediction and offers new insights and recommendations for the development of artificial intelligence technology for soil moisture prediction.

Suggested Citation

  • Wang, Yue & Zha, Yuanyuan, 2024. "Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004566
    DOI: 10.1016/j.agwat.2024.109120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.