IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004924.html
   My bibliography  Save this article

Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces

Author

Listed:
  • Feng, Jiaojiao
  • Wang, Weizhen
  • Xu, Feinan
  • Wang, Shengtang

Abstract

Evapotranspiration (ET) is one of the most critical components in hydrological processes and is of great importance to water resource management. Data-oriented deep learning (DL) has been increasingly utilized to forecast hydrological variables over recent years. In this study, the ability of the widely-used DL methods, including long short-term memory (LSTM), bi-directional LSTM (BiLSTM), deep neural network (DNN), and deep belief network (DBN), on the estimation of actual daily ET over the heterogeneous surfaces, was investigated using four groups of experiments. Firstly, the influence of the different input variables on the above DL-based ET model over the various land cover types was explored and analyzed. The results showed that the DL-based ET model can accurately estimate the actual daily ET over the heterogeneous surfaces using a few key conventional observations, i.e., net radiation (Rn), relative humidity (RH), air temperature (Ta), and wind speed (u), as well as soil water content (SWC). However, the performance of the DL-based ET model varied from the different combinations of input variables. SWC was crucial to the estimation of ET, with RMSD decreased from 0.94 to 0.76 mm d−1 when SWC was added to the DL model. Then, the comparison of the four DL-based ET model performances was done. The minor difference in ET estimates was caused by the algorithm differences between LSTM, BiLSTM, DNN, and DBN. Based on the above work, a unified DL-based ET model over the heterogeneous surfaces was developed. The unified DL-based model improved the applicability of DL in ET estimation although it underperformed the separate DL-based model. Finally, the comparison of the performance of the TSEB model and DL method was done. Evaluated with the results of heterogeneous surface, the DL-based model had a better accuracy with a MAPE of 16 – 50%; while the TSEB model had a larger MAPE of 20 – 55%. The results of this research suggest that the DL-based ET model is a promising alternative for the simulation of the daily ET over the heterogeneous surfaces.

Suggested Citation

  • Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004924
    DOI: 10.1016/j.agwat.2023.108627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
    2. Xu Lian & Shilong Piao & Chris Huntingford & Yue Li & Zhenzhong Zeng & Xuhui Wang & Philippe Ciais & Tim R. McVicar & Shushi Peng & Catherine Ottlé & Hui Yang & Yuting Yang & Yongqiang Zhang & Tao Wan, 2018. "Partitioning global land evapotranspiration using CMIP5 models constrained by observations," Nature Climate Change, Nature, vol. 8(7), pages 640-646, July.
    3. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Martin Jung & Markus Reichstein & Philippe Ciais & Sonia I. Seneviratne & Justin Sheffield & Michael L. Goulden & Gordon Bonan & Alessandro Cescatti & Jiquan Chen & Richard de Jeu & A. Johannes Dolman, 2010. "Recent decline in the global land evapotranspiration trend due to limited moisture supply," Nature, Nature, vol. 467(7318), pages 951-954, October.
    5. Feng, Jiaojiao & Wang, Weizhen & Che, Tao & Xu, Feinan, 2023. "Performance of the improved two-source energy balance model for estimating evapotranspiration over the heterogeneous surface," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    7. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    8. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Feng, Jiaojiao & Wang, Weizhen & Che, Tao & Xu, Feinan, 2023. "Performance of the improved two-source energy balance model for estimating evapotranspiration over the heterogeneous surface," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    5. He, Xinlei & Liu, Shaomin & Xu, Tongren & Yu, Kailiang & Gentine, Pierre & Zhang, Zhe & Xu, Ziwei & Jiao, Dandan & Wu, Dongxing, 2022. "Improving predictions of evapotranspiration by integrating multi-source observations and land surface model," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Zhu, Wenbin & Yu, Xiaoyu & Wei, Jiaxing & Lv, Aifeng, 2024. "Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison," Agricultural Water Management, Elsevier, vol. 291(C).
    10. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).
    12. Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
    13. Xu Lian & Wenli Zhao & Pierre Gentine, 2022. "Recent global decline in rainfall interception loss due to altered rainfall regimes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. J. C. Ryan & L. C. Smith & S. W. Cooley & B. Pearson & N. Wever & E. Keenan & J. T. M. Lenaerts, 2022. "Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    16. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    17. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    18. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    20. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.