IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1249-d731172.html
   My bibliography  Save this article

A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile

Author

Listed:
  • Gabriel Felmer

    (Facultad de Arquitectura y Urbanismo, Instituto de la Vivienda, Universidad de Chile, Santiago 8331051, Chile)

  • Rodrigo Morales-Vera

    (Centro de Biotecnología de los Recursos Naturales (CENBIO), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480112, Chile
    Facultad de Ingeniería, Ciencias y Tecnología, Universidad Bernardo O’Higgins, Santiago 8370993, Chile)

  • Rodrigo Astroza

    (Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago 7620001, Chile)

  • Ignacio González

    (Elige Madera, SpA, CL, Santiago 7810658, Chile)

  • Maureen Puettmann

    (CORRIM—Consortium for Research on Renewable Industrial Materials, Corvallis, OR 97339, USA)

  • Mark Wishnie

    (BTG Pactual Timberland Investment Group, 1180 Peachtree Street NE Suite #1810, Atlanta, GA 30309, USA)

Abstract

While high-rise mass-timber construction is booming worldwide as a more sustainable alternative to mainstream cement and steel, in South America, there are still many gaps to overcome regarding sourcing, design, and environmental performance. The aim of this study was to assess the carbon emission footprint of using mass-timber products to build a mid-rise low-energy residential building in central Chile (CCL). The design presented at a solar decathlon contest in Santiago was assessed through lifecycle analysis (LCA) and compared to an equivalent mainstream concrete building. Greenhouse gas emissions, expressed as global warming potential (GWP), from cradle-to-usage over a 50-year life span, were lower for the timber design, with 131 kg CO 2 eq/m 2 of floor area (compared to 353 kg CO 2 eq/m 2 ) and a biogenic carbon storage of 447 tons of CO 2 eq/m 2 based on sustainable forestry practices. From cradle-to-construction, the embodied emissions of the mass-timber building were 42% lower (101 kg CO 2 eq/m 2 ) than those of the equivalent concrete building (167 kg CO 2 eq/m 2 ). The embodied energy of the mass-timber building was 37% higher than that of its equivalent concrete building and its envelope design helped reduce space-conditioning emissions by as much as 83%, from 187 kg CO 2 eq/m 2 as estimated for the equivalent concrete building to 31 kg CO 2 eq/m 2 50-yr. Overall, provided that further efforts are made to address residual energy end-uses and end-of-life waste management options, the use of mass-timber products offers a promising potential in CCL for delivering zero carbon residential multistory buildings.

Suggested Citation

  • Gabriel Felmer & Rodrigo Morales-Vera & Rodrigo Astroza & Ignacio González & Maureen Puettmann & Mark Wishnie, 2022. "A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1249-:d:731172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Liu & Haibo Guo & Cheng Sun & Wen-Shao Chang, 2016. "Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 8(10), pages 1-13, October.
    2. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiurui Liu & Juntian Huang & Ting Ni & Lin Chen, 2022. "Measurement of China’s Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method," Sustainability, MDPI, vol. 14(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuyuki Nakano & Masahiko Karube & Nobuaki Hattori, 2020. "Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    2. Tetsuya Iwase & Takanobu Sasaki & Shogo Araki & Tomohumi Huzita & Chihiro Kayo, 2020. "Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    3. Endrik Arumägi & Targo Kalamees, 2020. "Cost and Energy Reduction of a New nZEB Wooden Building," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    6. Kamalakanta Sahoo & Richard Bergman & Sevda Alanya-Rosenbaum & Hongmei Gu & Shaobo Liang, 2019. "Life Cycle Assessment of Forest-Based Products: A Review," Sustainability, MDPI, vol. 11(17), pages 1-30, August.
    7. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    8. Cindy X. Chen & Francesca Pierobon & Susan Jones & Ian Maples & Yingchun Gong & Indroneil Ganguly, 2021. "Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    9. Yuki Fuchigami & Keisuke Kojiro & Yuzo Furuta, 2020. "Quantification of Greenhouse Gas Emissions from Wood-Plastic Recycled Composite (WPRC) and Verification of the Effect of Reducing Emissions through Multiple Recycling," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    10. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    11. Hana Svobodová & Petra Hlaváčková, 2023. "Forest as a source of renewable material to reduce the environmental impact of buildings," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(10), pages 451-462.
    12. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    13. Joseph Abed & Scott Rayburg & John Rodwell & Melissa Neave, 2022. "A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    14. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    15. Jozef Švajlenka & Mária Kozlovská & František Vranay & Terézia Pošiváková & Miroslava Jámborová, 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood," Energies, MDPI, vol. 13(12), pages 1-15, June.
    16. Jozef Švajlenka & Mária Kozlovská, 2018. "Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    17. Antonino Di Bella & Milica Mitrovic, 2020. "Acoustic Characteristics of Cross-Laminated Timber Systems," Sustainability, MDPI, vol. 12(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1249-:d:731172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.