IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p144-d709870.html
   My bibliography  Save this article

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Author

Listed:
  • Cindy X. Chen

    (Population Research Center, Portland State University, Portland, OR 97201, USA)

  • Francesca Pierobon

    (School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA)

  • Susan Jones

    (College of Built Environments, University of Washington, Seattle, WA 98195, USA
    Atelierjones LLC, Seattle, WA 98101, USA)

  • Ian Maples

    (Atelierjones LLC, Seattle, WA 98101, USA)

  • Yingchun Gong

    (Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China)

  • Indroneil Ganguly

    (School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA)

Abstract

As the population continues to grow in China’s urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Suggested Citation

  • Cindy X. Chen & Francesca Pierobon & Susan Jones & Ian Maples & Yingchun Gong & Indroneil Ganguly, 2021. "Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:144-:d:709870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    2. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    3. Galina Churkina & Alan Organschi & Christopher P. O. Reyer & Andrew Ruff & Kira Vinke & Zhu Liu & Barbara K. Reck & T. E. Graedel & Hans Joachim Schellnhuber, 2020. "Buildings as a global carbon sink," Nature Sustainability, Nature, vol. 3(4), pages 269-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuyuki Nakano & Masahiko Karube & Nobuaki Hattori, 2020. "Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    2. Tetsuya Iwase & Takanobu Sasaki & Shogo Araki & Tomohumi Huzita & Chihiro Kayo, 2020. "Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    3. Kamalakanta Sahoo & Richard Bergman & Sevda Alanya-Rosenbaum & Hongmei Gu & Shaobo Liang, 2019. "Life Cycle Assessment of Forest-Based Products: A Review," Sustainability, MDPI, vol. 11(17), pages 1-30, August.
    4. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    5. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-03832461, HAL.
    6. Moncef L. Nehdi & Yannian Zhang & Xiaohan Gao & Lei V. Zhang & Ahmed R. Suleiman, 2021. "Experimental Investigation on Axial Compression of Resilient Nail-Cross-Laminated Timber Panels," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    7. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Sinha, Shreya & Narain, Nivedita & Bhanjdeo, Arundhita, 2022. "Building back better? Resilience as wellbeing for rural migrant households in Bihar, India," World Development, Elsevier, vol. 159(C).
    9. Creutzburg, Leonard & Lieberherr, Eva, 2021. "To log or not to log? Actor preferences and networks in Swiss forest policy," Forest Policy and Economics, Elsevier, vol. 125(C).
    10. Gabriel Felmer & Rodrigo Morales-Vera & Rodrigo Astroza & Ignacio González & Maureen Puettmann & Mark Wishnie, 2022. "A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    11. Tenbensel, Tim & Cumming, Jacqueline & Willing, Esther, 2023. "The 2022 restructure of Aotearoa New Zealand's health system: Will it succeed in advancing equity where others have failed?," Health Policy, Elsevier, vol. 134(C).
    12. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    13. Matteo Francesco Ruta & Francesco Pittau & Gabriele Masera, 2024. "Towards Zero-Carbon Buildings: Challenges and Opportunities from Reversing the Material Pyramid," Sustainability, MDPI, vol. 16(11), pages 1-27, May.
    14. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    15. Olga Beatrice Carcassi & Pietro Minotti & Guillaume Habert & Ingrid Paoletti & Sophie Claude & Francesco Pittau, 2022. "Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation," Sustainability, MDPI, vol. 14(3), pages 1-23, January.
    16. Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Haeler, Elena & Bolte, Andreas & Buchacher, Rafael & Hänninen, Harri & Jandl, Robert & Juutinen, Artti & Kuhlmey, Katharina & Kurttila, Mikko & Lidestav, Gun & Mäkipää, Raisa & Rosenkranz, Lydia & Tri, 2023. "Forest subsidy distribution in five European countries," Forest Policy and Economics, Elsevier, vol. 146(C).
    18. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:144-:d:709870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.