IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4722-d262241.html
   My bibliography  Save this article

Life Cycle Assessment of Forest-Based Products: A Review

Author

Listed:
  • Kamalakanta Sahoo

    (Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA
    Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Richard Bergman

    (Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA)

  • Sevda Alanya-Rosenbaum

    (Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA)

  • Hongmei Gu

    (Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA)

  • Shaobo Liang

    (Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA)

Abstract

Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.

Suggested Citation

  • Kamalakanta Sahoo & Richard Bergman & Sevda Alanya-Rosenbaum & Hongmei Gu & Shaobo Liang, 2019. "Life Cycle Assessment of Forest-Based Products: A Review," Sustainability, MDPI, vol. 11(17), pages 1-30, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4722-:d:262241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Liu & Haibo Guo & Cheng Sun & Wen-Shao Chang, 2016. "Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 8(10), pages 1-13, October.
    2. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    3. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    4. Dami Moon & Masayuki Sagisaka & Kiyotaka Tahara & Kenichiro Tsukahara, 2017. "Progress towards Sustainable Production: Environmental, Economic, and Social Assessments of the Cellulose Nanofiber Production Process," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    5. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    6. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    7. Ramage, Michael H. & Burridge, Henry & Busse-Wicher, Marta & Fereday, George & Reynolds, Thomas & Shah, Darshil U. & Wu, Guanglu & Yu, Li & Fleming, Patrick & Densley-Tingley, Danielle & Allwood, Juli, 2017. "The wood from the trees: The use of timber in construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 333-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Katsuyuki Nakano & Masahiko Karube & Nobuaki Hattori, 2020. "Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Eskil Mattsson & Martin Erlandsson & Per Erik Karlsson & Hampus Holmström, 2022. "A Conceptual Landscape-Level Approach to Assess the Impacts of Forestry on Biodiversity," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    4. Vito Imbrenda & Rosa Coluzzi & Francesca Mariani & Bogdana Nosova & Eva Cudlinova & Rosanna Salvia & Giovanni Quaranta & Luca Salvati & Maria Lanfredi, 2023. "Working in (Slow) Progress: Socio-Environmental and Economic Dynamics in the Forestry Sector and the Contribution to Sustainable Development in Europe," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Zhongjia Chen & Hongmei Gu & Richard D. Bergman & Shaobo Liang, 2020. "Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Mariana Hassegawa & Jo Van Brusselen & Mathias Cramm & Pieter Johannes Verkerk, 2022. "Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability," Land, MDPI, vol. 11(12), pages 1-16, November.
    7. Iryna Zamula & Maryna Tanasiieva & Vitalii Travin & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2020. "Assessment of the Profitability of Environmental Activities in Forestry," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    8. Xuyao Zhang & Weimin Zhang & Dayu Xu, 2020. "Life Cycle Assessment of Complex Forestry Enterprise: A Case Study of a Forest–Fiberboard Integrated Enterprise," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    9. Maria Lanfredi & Rosa Coluzzi & Vito Imbrenda & Bogdana Nosova & Massimiliano Giacalone & Rosario Turco & Marcela Prokopovà & Luca Salvati, 2023. "In-between Environmental Sustainability and Economic Viability: An Analysis of the State, Regulations, and Future of Italian Forestry Sector," Land, MDPI, vol. 12(5), pages 1-21, May.
    10. Shanshan Wang & Jiaxin Chen & Michael T. Ter‐Mikaelian & Annie Levasseur & Hongqiang Yang, 2022. "From carbon neutral to climate neutral: Dynamic life cycle assessment for wood‐based panels produced in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1437-1449, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tetsuya Iwase & Takanobu Sasaki & Shogo Araki & Tomohumi Huzita & Chihiro Kayo, 2020. "Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Katsuyuki Nakano & Masahiko Karube & Nobuaki Hattori, 2020. "Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    5. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    6. Cindy X. Chen & Francesca Pierobon & Susan Jones & Ian Maples & Yingchun Gong & Indroneil Ganguly, 2021. "Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    7. Gabriel Felmer & Rodrigo Morales-Vera & Rodrigo Astroza & Ignacio González & Maureen Puettmann & Mark Wishnie, 2022. "A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    8. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    11. Jozef Švajlenka & Mária Kozlovská & František Vranay & Terézia Pošiváková & Miroslava Jámborová, 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood," Energies, MDPI, vol. 13(12), pages 1-15, June.
    12. Endrik Arumägi & Targo Kalamees, 2020. "Cost and Energy Reduction of a New nZEB Wooden Building," Energies, MDPI, vol. 13(14), pages 1-16, July.
    13. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    15. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework," Applied Energy, Elsevier, vol. 206(C), pages 1088-1101.
    16. Antonino Di Bella & Milica Mitrovic, 2020. "Acoustic Characteristics of Cross-Laminated Timber Systems," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    17. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    18. Moncef L. Nehdi & Yannian Zhang & Xiaohan Gao & Lei V. Zhang & Ahmed R. Suleiman, 2021. "Experimental Investigation on Axial Compression of Resilient Nail-Cross-Laminated Timber Panels," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    19. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    20. Nazari, Meysam & Jebrane, Mohamed & Terziev, Nasko, 2023. "New hybrid bio-composite based on epoxidized linseed oil and wood particles hosting ethyl palmitate for energy storage in buildings," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4722-:d:262241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.