IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1566-d322682.html
   My bibliography  Save this article

Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China

Author

Listed:
  • Yu Dong

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Tongyu Qin

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Siyuan Zhou

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Lu Huang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Rui Bo

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Haibo Guo

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Xunzhi Yin

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

Many stadiums will be built in China in the next few decades due to increasing public interest in physical exercise and the incentive policies issued by the government under its National Fitness Program. This paper investigates the energy saving and carbon reduction performance of timber stadiums in China in comparison with stadiums constructed using conventional building materials, based on both life cycle energy assessment (LCEA) and life cycle carbon assessment (LCCA). The authors select five representative cities in five climate zones in China as the simulation environment, simulate energy use in the operation phase of stadiums constructed from reinforced concrete (RC) and timber, and compare the RC and timber stadiums in terms of their life cycle energy consumption and carbon emissions. The LCEA results reveal that the energy saving potential afforded by timber stadiums is 11.05%, 12.14%, 8.15%, 4.61% and 4.62% lower than those of RC buildings in “severely cold,” “cold,” “hot summer, cold winter,” “hot summer, warm winter,” and “temperate” regions, respectively. The LCCA results demonstrate that the carbon emissions of timber stadiums are 15.85%, 15.86%, 18.88%, 19.22% and 22.47% lower than those of RC buildings for the regions above, respectively. This demonstrates that in China, timber stadiums have better energy conservation and carbon reduction potential than RC stadiums, based on life cycle assessment. Thus, policy makers are advised to encourage the promotion of timber stadiums in China to achieve the goal of sustainable energy development for public buildings.

Suggested Citation

  • Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1566-:d:322682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    2. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    3. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    4. Al-mulali, Usama & Tang, Chor Foon & Ozturk, Ilhan, 2015. "Estimating the Environment Kuznets Curve hypothesis: Evidence from Latin America and the Caribbean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 918-924.
    5. Garg, Amit & Maheshwari, Jyoti & Shukla, P.R. & Rawal, Rajan, 2017. "Energy appliance transformation in commercial buildings in India under alternate policy scenarios," Energy, Elsevier, vol. 140(P1), pages 952-965.
    6. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    8. Ramage, Michael H. & Burridge, Henry & Busse-Wicher, Marta & Fereday, George & Reynolds, Thomas & Shah, Darshil U. & Wu, Guanglu & Yu, Li & Fleming, Patrick & Densley-Tingley, Danielle & Allwood, Juli, 2017. "The wood from the trees: The use of timber in construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 333-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongjia Chen & Hongmei Gu & Richard D. Bergman & Shaobo Liang, 2020. "Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    2. Jianan Liu & Ni Dai & Yuan Sui & Asmatullah Yaqoubi, 2023. "A Study on the Impact of Fiscal Decentralization on Regional Green Development: A Perspective Based on the Emphasis on Sports," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    3. Muwei Xi & Dingqing Wang & Ye Xiang, 2023. "Fiscal Expenditure on Sports and Regional Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    4. Roni Rinne & Hüseyin Emre Ilgın & Markku Karjalainen, 2022. "Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland," IJERPH, MDPI, vol. 19(2), pages 1-24, January.
    5. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    6. Markku Karjalainen & Hüseyin Emre Ilgın & Lauri Metsäranta & Markku Norvasuo, 2021. "Residents’ Attitudes towards Wooden Facade Renovation and Additional Floor Construction in Finland," IJERPH, MDPI, vol. 18(23), pages 1-17, November.
    7. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Švajlenka & Mária Kozlovská & František Vranay & Terézia Pošiváková & Miroslava Jámborová, 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood," Energies, MDPI, vol. 13(12), pages 1-15, June.
    2. Tetsuya Iwase & Takanobu Sasaki & Shogo Araki & Tomohumi Huzita & Chihiro Kayo, 2020. "Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    3. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Cindy X. Chen & Francesca Pierobon & Indroneil Ganguly, 2019. "Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    5. Kamalakanta Sahoo & Richard Bergman & Sevda Alanya-Rosenbaum & Hongmei Gu & Shaobo Liang, 2019. "Life Cycle Assessment of Forest-Based Products: A Review," Sustainability, MDPI, vol. 11(17), pages 1-30, August.
    6. Pablo-Romero, María del P. & De Jesús, Josué, 2016. "Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1343-1350.
    7. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    8. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    10. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    11. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    12. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    13. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    14. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    15. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    16. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    17. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    18. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    19. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Abid Rashid Gill & Kuperan K. Viswanathan & Sallahuddin Hassan, 2017. "Is Environmental Kuznets Curve Still Relevant?," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 156-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1566-:d:322682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.