IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2449-d334934.html
   My bibliography  Save this article

Quantification of Greenhouse Gas Emissions from Wood-Plastic Recycled Composite (WPRC) and Verification of the Effect of Reducing Emissions through Multiple Recycling

Author

Listed:
  • Yuki Fuchigami

    (Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan)

  • Keisuke Kojiro

    (Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan)

  • Yuzo Furuta

    (Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan)

Abstract

Wood-plastic recycled composite (WPRC) is a building material that uses certain amounts of recycled wood and/or plastic materials contained in wood-plastic composites. They are characterized by multiple recycling processes in which products that become post-consumer materials are technically able to be recycled to produce WPRC products. However, there is no research case that quantifies the effect of reducing greenhouse gas (GHG) emissions for the feature of multiple recycling. In this study, we quantified GHG emissions during the life cycle of WPRC that was manufactured by companies certified to the Japanese Industrial Standard (JIS) A 5741, using the life cycle assessment method. The following conclusions were revealed in this study. (1) The GHG emission of the targeted WPRC was 3489 kg-CO 2 e/t, and the emission rates from the WPRC production process and the combustion of WPRC waste were found to be particularly high. (2) It was found that setting the recycled material rate of plastic materials to 100% would reduce GHG emissions by 28% (1316 kg-CO 2 e/t) compared to when the recycled material rate was 0%. (3) It was also found that GHG emissions can be reduced by up to about 28% by multiple recycling of WPRC. It can be said that this study set a benchmark of GHG emissions for WPRC produced in Japan.

Suggested Citation

  • Yuki Fuchigami & Keisuke Kojiro & Yuzo Furuta, 2020. "Quantification of Greenhouse Gas Emissions from Wood-Plastic Recycled Composite (WPRC) and Verification of the Effect of Reducing Emissions through Multiple Recycling," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2449-:d:334934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Carolina Gámez-García & Héctor Saldaña-Márquez & José Manuel Gómez-Soberón & Susana Paola Arredondo-Rea & María Consolación Gómez-Soberón & Ramón Corral-Higuera, 2019. "Environmental Challenges in the Residential Sector: Life Cycle Assessment of Mexican Social Housing," Energies, MDPI, vol. 12(14), pages 1-24, July.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Donato Morea & Luigi Antonio Poggi, 2017. "An Innovative Model for the Sustainability of Investments in the Wind Energy Sector: The Use of Green Sukuk in an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 53-60.
    4. Ying Liu & Haibo Guo & Cheng Sun & Wen-Shao Chang, 2016. "Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 8(10), pages 1-13, October.
    5. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    6. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "Shari’ah-Compliant Finance: A Possible Novel Paradigm for Green Economy Investments in Italy," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    7. Héctor Saldaña-Márquez & Diana C. Gámez-García & José M. Gómez-Soberón & Susana P. Arredondo-Rea & Ramón Corral-Higuera & María C. Gómez-Soberón, 2019. "Housing Indicators for Sustainable Cities in Middle-Income Countries through the Residential Urban Environment Recognized Using Single-Family Housing Rating Systems," Sustainability, MDPI, vol. 11(16), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Almirante Porto Tiburcio Rodrigues & Roberta Vianna Alves & Maria José de Oliveira Cavalcanti Guimarães & Thiago Santiago Gomes & Elen Beatriz Acordi Vasques Pacheco, 2022. "Assessment of plastic lumber production in Brazil as a substitute for natural wood," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9705-9730, August.
    2. Keisuke Kojiro & Akane Kusumoto & Hiroaki Horiyama & Makoto Sumiyoshi & Masaaki Iwamoto & Koji Ishimoto & Yuzo Furuta, 2024. "Multiple Recycling of Wood–Plastic Recycled Composite (WPRC): Developing a Method to Evaluate the Degree of Degradation of Used WPRC," Sustainability, MDPI, vol. 16(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keisuke Kojiro & Akane Kusumoto & Hiroaki Horiyama & Makoto Sumiyoshi & Masaaki Iwamoto & Koji Ishimoto & Yuzo Furuta, 2024. "Multiple Recycling of Wood–Plastic Recycled Composite (WPRC): Developing a Method to Evaluate the Degree of Degradation of Used WPRC," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
    2. Yovanna Elena Valencia-Barba & José Manuel Gómez-Soberón & María Consolación Gómez-Soberón & Fernando López-Gayarre, 2020. "An Epitome of Building Floor Systems by Means of LCA Criteria," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    3. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    4. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Donato Morea & Mohamad El Mehtedi & Pasquale Buonadonna, 2023. "Energy Context: Analysis of Selected Studies and Future Research Developments," Energies, MDPI, vol. 16(3), pages 1-6, February.
    6. Ningshuang Zeng & Yan Liu & Chao Mao & Markus König, 2018. "Investigating the Relationship between Construction Supply Chain Integration and Sustainable Use of Material: Evidence from China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    7. Kailun Feng & Weizhuo Lu & Shiwei Chen & Yaowu Wang, 2018. "An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    8. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    9. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    10. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    11. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    12. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    13. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    14. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    15. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    16. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    17. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    18. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    19. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2449-:d:334934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.