IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13329-d693069.html
   My bibliography  Save this article

Non-Invasive Monitoring of the Technical Condition of Power Units Using the FAM-C and FDM-A Electrical Methods

Author

Listed:
  • Mariusz Zieja

    (Logistic Support Department, Air Force Institute of Technology, 6 Ksiecia Boleslawa Street, 01-495 Warsaw, Poland)

  • Andrzej Gębura

    (Department of Avionics, Air Force Institute of Technology, 6 Ksiecia Boleslawa Street, 01-495 Warsaw, Poland)

  • Andrzej Szelmanowski

    (Department of Avionics, Air Force Institute of Technology, 6 Ksiecia Boleslawa Street, 01-495 Warsaw, Poland)

  • Bartłomiej Główczyk

    (Logistic Support Department, Air Force Institute of Technology, 6 Ksiecia Boleslawa Street, 01-495 Warsaw, Poland)

Abstract

This article presents the selected results of analytical and structural work conducted at the Air Force Institute of Technology (pl. ITWL) in the field of building a measuring apparatus for non-invasive monitoring of the technical condition of aircraft power units. Presented innovative FAM-C and FDM-A methods allow for observation of frequency modulation parameters as well as identification and diagnostic classification of particular mechanical subassemblies supplying the on-board generator and thus enable non-invasive monitoring of technical condition of the aircraft power unit and the aircraft propulsion system. The main purpose of this article is to present the measurement apparatus errors that occur in the signal conditioning system in the FAM-C and FDM-A methods. In spite of the fact that the measuring instrument was built on the basis of digital technology and that it uses typical solutions of electronic frequency measurement, due to the specificity of the applied diagnostic method there occur specific measuring errors which are presented in this article.

Suggested Citation

  • Mariusz Zieja & Andrzej Gębura & Andrzej Szelmanowski & Bartłomiej Główczyk, 2021. "Non-Invasive Monitoring of the Technical Condition of Power Units Using the FAM-C and FDM-A Electrical Methods," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13329-:d:693069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    2. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    3. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Wojciech Wawrzyński & Mariusz Zieja & Justyna Tomaszewska & Mariusz Michalski, 2021. "Reliability Assessment of Aircraft Commutators," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Guishuang Tian & Shaoping Wang & Jian Shi & Yajing Qiao, 2022. "State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    4. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    6. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    7. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    10. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    13. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    14. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    15. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    16. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    17. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    20. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13329-:d:693069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.