IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15870-d987402.html
   My bibliography  Save this article

Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach

Author

Listed:
  • Elnaz Amirahmadi

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Jan Moudrý

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Petr Konvalina

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Stefan Josef Hörtenhuber

    (Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Str. 33, 1180 Vienna, Austria)

  • Mohammad Ghorbani

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Reinhard W. Neugschwandtner

    (Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, Tulln, 1190 Vienna, Austria)

  • Zhixiang Jiang

    (College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China)

  • Theresa Krexner

    (Institute of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria)

  • Marek Kopecký

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

Abstract

The rising demand for agricultural products and expanding public awareness of environmental friendliness have led to the adoption of the organic farming system rather than the conventional one. The life cycle assessment (LCA) concept is a frequently used method to examine the environmental impacts of any activity across its entire life cycle. This research is the first use of LCA for the impacts of vermicompost and cattle manure as organic fertilizers in rice farming. The main goal of this study was to compare the environmental impacts of conventional and organic rice farming. This paper uses midpoint attributional LCA to analyze environmental damages during rice production. The four primary harm categories used in this strategy to categorize the environmental effects were: (1) climate change, (2) human health, (3) ecosystem quality, and (4) resources. The inventory data for the agricultural stage were obtained through farmer interviews. The system boundaries were set to cradle to farm gate, and 1 ton of final product (dry matter) was used as the functional unit. The results show that in all main damage categories, except for particulate matter formation, stratospheric ozone depletion, mineral resource scarcity, and freshwater eutrophication, conventional rice production has higher environmental impacts than organic rice production. Overall, organic rice production is more effective in diminishing the negative environmental effects of farming compared to conventional rice production.

Suggested Citation

  • Elnaz Amirahmadi & Jan Moudrý & Petr Konvalina & Stefan Josef Hörtenhuber & Mohammad Ghorbani & Reinhard W. Neugschwandtner & Zhixiang Jiang & Theresa Krexner & Marek Kopecký, 2022. "Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15870-:d:987402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Marisa D.M. Vieira & Thomas C. Ponsioen & Mark J. Goedkoop & Mark A.J. Huijbregts, 2016. "Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction," Resources, MDPI, vol. 5(1), pages 1-12, January.
    3. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    4. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    5. Fusuo Zhang & Xinping Chen & Peter Vitousek, 2013. "An experiment for the world," Nature, Nature, vol. 497(7447), pages 33-35, May.
    6. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    7. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    8. Zanon, Jair Augusto & Favaretto, Nerilde & Democh Goularte, Gabriel & Dieckow, Jeferson & Barth, Gabriel, 2020. "Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    2. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    3. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    4. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    5. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    6. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    7. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    8. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    9. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    10. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    11. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    12. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    13. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    14. Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    15. Tina L. Saitone & Richard J. Sexton, 2017. "Agri-food supply chain: evolution and performance with conflicting consumer and societal demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 634-657.
    16. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    17. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Fertő, Imre & Bakucs, Zoltán & Viira, Ants-Hannes & Aleksandrova, Olha & Luik-Lindsaar, Helis & Omel, Raul, 2024. "Are Organic Farms Less Efficient? The Case of Estonian Dairy Farms," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(4), March.
    19. Guy Meunier, 2020. "Land-sparing vs land-sharing with incomplete policies [Rethinking the causes of deforestation: lessons from economic models]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 438-466.
    20. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15870-:d:987402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.