IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v5y2016i1p2-d61784.html
   My bibliography  Save this article

Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction

Author

Listed:
  • Marisa D.M. Vieira

    (Radboud University Nijmegen, Faculty of Science, Department of Environmental Science, P.O. Box 9010, Nijmegen 6500 GL, The Netherlands
    PRé Consultants b.v., Stationsplein 121, Amersfoort 3818 LE, The Netherlands)

  • Thomas C. Ponsioen

    (PRé Consultants b.v., Stationsplein 121, Amersfoort 3818 LE, The Netherlands)

  • Mark J. Goedkoop

    (PRé Consultants b.v., Stationsplein 121, Amersfoort 3818 LE, The Netherlands)

  • Mark A.J. Huijbregts

    (Radboud University Nijmegen, Faculty of Science, Department of Environmental Science, P.O. Box 9010, Nijmegen 6500 GL, The Netherlands)

Abstract

In the evaluation of product life cycles, methods to assess the increase in scarcity of resources are still under development. Indicators that can express the importance of an increase in scarcity of metals extracted include surplus ore produced, surplus energy required, and surplus costs in the mining and the milling stage. Particularly the quantification of surplus costs per unit of metal extracted as an indicator is still in an early stage of development. Here, we developed a method that quantifies the surplus cost potential of mining and milling activities per unit of metal extracted, fully accounting for mine-specific differences in costs. The surplus cost potential indicator is calculated as the average cost increase resulting from all future metal extractions, as quantified via cumulative cost-tonnage relationships. We tested the calculation procedure with 12 metals and platinum-group metals as a separate group. We found that the surplus costs range six orders of magnitude between the metals included, i.e ., between $0.01–$0.02 (iron) and $13,533–$17,098 (rhodium) USD (year 2013) per kilogram of metal extracted. The choice of the reserve estimate (reserves vs. ultimate recoverable resource) influenced the surplus costs only to a limited extent, i.e ., between a factor of 0.7 and 3.2 for the metals included. Our results provide a good basis to regularly include surplus cost estimates as resource scarcity indicator in life cycle assessment.

Suggested Citation

  • Marisa D.M. Vieira & Thomas C. Ponsioen & Mark J. Goedkoop & Mark A.J. Huijbregts, 2016. "Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction," Resources, MDPI, vol. 5(1), pages 1-12, January.
  • Handle: RePEc:gam:jresou:v:5:y:2016:i:1:p:2-:d:61784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/5/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/5/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reynolds, Douglas B., 1999. "The mineral economy: how prices and costs can falsely signal decreasing scarcity," Ecological Economics, Elsevier, vol. 31(1), pages 155-166, October.
    2. Dahlman, Carl J, 1979. "The Problem of Externality," Journal of Law and Economics, University of Chicago Press, vol. 22(1), pages 141-162, April.
    3. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    4. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    5. Phillips, W. G. B. & Edwards, D. P., 1976. "Metal prices as a function of ore grade," Resources Policy, Elsevier, vol. 2(3), pages 167-178, September.
    6. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    7. Crowson, Phillip, 2003. "Mine size and the structure of costs," Resources Policy, Elsevier, vol. 29(1-2), pages 15-36.
    8. Tilton, John E., 1996. "Exhaustible resources and sustainable development : Two different paradigms," Resources Policy, Elsevier, vol. 22(1-2), pages 91-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnaz Amirahmadi & Jan Moudrý & Petr Konvalina & Stefan Josef Hörtenhuber & Mohammad Ghorbani & Reinhard W. Neugschwandtner & Zhixiang Jiang & Theresa Krexner & Marek Kopecký, 2022. "Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    2. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    3. R. H. E. M. Koppelaar & H. Koppelaar, 2016. "The Ore Grade and Depth Influence on Copper Energy Inputs," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-16, December.
    4. Samadi, Sascha & Gröne, Marie-Christine & Schneidewind, Uwe & Luhmann, Hans-Jochen & Venjakob, Johannes & Best, Benjamin, 2017. "Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 126-134.
    5. Harald Ulrik Sverdrup & Kristin Vala Ragnarsdottir & Deniz Koca, 2017. "Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-29, March.
    6. József Popp & Judit Oláh & Mária Farkas Fekete & Zoltán Lakner & Domicián Máté, 2018. "The Relationship Between Prices of Various Metals, Oil and Scarcity," Energies, MDPI, vol. 11(9), pages 1-19, September.
    7. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.
    8. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    9. António Mateus & Luís Martins, 2021. "Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 239-261, July.
    10. Philipp Schäfer & Mario Schmidt, 2021. "Model-based analysis of the limits of recycling for its contribution to climate change mitigation [Modellgestützte Analyse der Grenzen des Beitrags von Recycling zum Klimaschutz]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 65-75, June.
    11. Ryosuke Yokoi & Jun Nakatani & Yuichi Moriguchi, 2018. "Calculation of Characterization Factors of Mineral Resources Considering Future Primary Resource Use Changes: A Comparison between Iron and Copper," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    12. Brett J. Watson & Roderick G. Eggert, 2021. "Understanding relative metal prices and availability: Combining physical and economic perspectives," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 890-899, August.
    13. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    14. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    15. Yoonkyo Cho & Taehwan Kim & Jaewhak Roh, 2021. "An analysis of the effects of electronic commerce on the Korean economy using the CGE model," Electronic Commerce Research, Springer, vol. 21(3), pages 831-854, September.
    16. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    17. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    18. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    19. Petrick, Martin, 2004. "Governing Structural Change And Externalities In Agriculture: Toward A Normative Institutional Economics Of Rural Development," IAMO Discussion Papers 14878, Institute of Agricultural Development in Transition Economies (IAMO).
    20. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:5:y:2016:i:1:p:2-:d:61784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.