Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.02.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
- Zamzamian, Amirhossein & KeyanpourRad, Mansoor & KianiNeyestani, Maryam & Jamal-Abad, Milad Tajik, 2014. "An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 71(C), pages 658-664.
- Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
- Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
- Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
- Poghosyan, V. & Hassan, Mohamed I., 2015. "Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant," Renewable Energy, Elsevier, vol. 75(C), pages 152-164.
- Al-Nimr, M.A. & Alkam, M.K., 1998. "A modified tubeless solar collector partially filled with porous substrate," Renewable Energy, Elsevier, vol. 13(2), pages 165-173.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
- Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
- Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
- Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
- Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
- Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
- Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
- Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
- Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
- Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
- Leong, K.Y. & Ong, Hwai Chyuan & Amer, N.H. & Norazrina, M.J. & Risby, M.S. & Ku Ahmad, K.Z., 2016. "An overview on current application of nanofluids in solar thermal collector and its challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1092-1105.
- Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
- Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
- Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
- Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
- Wu, Zhiyong & Lei, Dongqiang & Yuan, Guofeng & Shao, Jiajia & Zhang, Yunting & Wang, Zhifeng, 2014. "Structural reliability analysis of parabolic trough receivers," Applied Energy, Elsevier, vol. 123(C), pages 232-241.
- Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2020. "Performance evaluation of a linear Fresnel collector with catoptric subsets," Renewable Energy, Elsevier, vol. 156(C), pages 68-83.
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
More about this item
Keywords
Solar parabolic trough collector; Metal foam; ASHRAE 93 standard; Thermal efficiency; Thermal conductivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:156-163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.