IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp735-747.html
   My bibliography  Save this article

Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube

Author

Listed:
  • Akbarzadeh, Sanaz
  • Valipour, Mohammad Sadegh

Abstract

Parabolic trough collectors (PTCs) can provide a wide range of applications from domestic hot water production to energy demands of the industry. Heat transfer improvement of PTCs can reduce the system size and the cost. The use of corrugated tubes as a heat transfer improvement method is essential in industrial applications. Therefore, this study aim is to investigate the impacts of the pitch to diameter ratio and the roughness height to diameter ratio of corrugated tubes on the thermal efficiency and exergy efficiency of PTC. To this end, nine different helically corrugated tubes were analyzed experimentally under the ASHRAE standard 93 (2010). The Reynolds number changes in the range of 5000–10000. The results indicated that the reduction in the pitch ratio and the increase in the rib-height ratio result in increasing the thermal and exergy efficiencies of the PTC. The maximum efficiency of 65.8% can be achieved for the PTC with an absorber tube (P/DH=0.12 and e/DH = 0.06). The friction factor increases by about 35.5%–84.8%. Based on the experimental results, due to the high thermal potentials, it is recommended to use a helically corrugated tube in PTC for thermal applications.

Suggested Citation

  • Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2020. "Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube," Renewable Energy, Elsevier, vol. 155(C), pages 735-747.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:735-747
    DOI: 10.1016/j.renene.2020.03.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    2. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    3. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.
    4. Wu, Zhiyong & Lei, Dongqiang & Yuan, Guofeng & Shao, Jiajia & Zhang, Yunting & Wang, Zhifeng, 2014. "Structural reliability analysis of parabolic trough receivers," Applied Energy, Elsevier, vol. 123(C), pages 232-241.
    5. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    6. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2018. "Heat transfer enhancement in parabolic trough collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 198-218.
    7. Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
    8. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    9. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    2. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    3. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    4. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    5. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    6. Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.
    7. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    8. Mohamed Allam & Mohamed Tawfik & Maher Bekheit & Emad El-Negiry, 2022. "Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    9. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    10. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    4. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    5. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    6. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    7. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    8. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    9. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    10. Kurşun, Burak, 2019. "Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes," Renewable Energy, Elsevier, vol. 140(C), pages 816-827.
    11. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    12. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    13. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    14. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).
    15. Kaluba, V.S. & Mohamad, Khaled & Ferrer, P., 2020. "Experimental and simulated performance of hot mirror coatings in a parabolic trough receiver," Applied Energy, Elsevier, vol. 257(C).
    16. Zhu, Xiaowei & Zhu, Lei & Zhao, Jingquan, 2017. "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver," Energy, Elsevier, vol. 141(C), pages 1146-1155.
    17. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    18. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    19. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    20. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:735-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.