IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp989-1003.html
   My bibliography  Save this article

Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts

Author

Listed:
  • Mwesigye, Aggrey
  • Bello-Ochende, Tunde
  • Meyer, Josua P.

Abstract

In this paper, a numerical investigation of thermal and thermodynamic performance of a receiver for a parabolic trough solar collector with perforated plate inserts is presented. The analysis was carried out for different perforated plate geometrical parameters including dimensionless plate orientation angle, the dimensionless plate spacing, and the dimensionless plate diameter. The Reynolds number varies in the range 1.02×104⩽Re⩽7.38×105 depending on the heat transfer fluid temperature. The fluid temperatures used are 400K, 500K, 600K and 650K. The porosity of the plate was fixed at 0.65. The study shows that, for a given value of insert orientation, insert spacing and insert size, there is a range of Reynolds numbers for which the thermal performance of the receiver improves with the use of perforated plate inserts. In this range, the modified thermal efficiency increases between 1.2% and 8%. The thermodynamic performance of the receiver due to inclusion of perforated plate inserts is shown to improve for flow rates lower than 0.01205m3/s. Receiver temperature gradients are shown to reduce with the use of inserts. Correlations for Nusselt number and friction factor were also derived and presented.

Suggested Citation

  • Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:989-1003
    DOI: 10.1016/j.apenergy.2014.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
    2. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    3. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    4. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2013. "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios," Energy, Elsevier, vol. 53(C), pages 114-127.
    5. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    6. Ravi Kumar, K. & Reddy, K.S., 2009. "Thermal analysis of solar parabolic trough with porous disc receiver," Applied Energy, Elsevier, vol. 86(9), pages 1804-1812, September.
    7. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    8. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    4. Jin, Jian & Ling, Yunyi & Hao, Yong, 2017. "Similarity analysis of parabolic-trough solar collectors," Applied Energy, Elsevier, vol. 204(C), pages 958-965.
    5. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    6. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2013. "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios," Energy, Elsevier, vol. 53(C), pages 114-127.
    7. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    9. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    10. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    11. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    12. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    14. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    15. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    16. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    17. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    18. Baloyi, J. & Bello-Ochende, T. & Meyer, J.P., 2014. "Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor," Energy, Elsevier, vol. 70(C), pages 653-663.
    19. Wu, Zhiyong & Lei, Dongqiang & Yuan, Guofeng & Shao, Jiajia & Zhang, Yunting & Wang, Zhifeng, 2014. "Structural reliability analysis of parabolic trough receivers," Applied Energy, Elsevier, vol. 123(C), pages 232-241.
    20. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:989-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.