IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002144.html
   My bibliography  Save this article

A novel modified conformable fractional grey time-delay model for power generation prediction

Author

Listed:
  • Yang, Yang
  • Wang, Xiuqin

Abstract

Many fractional-order grey models are proposed and discussed for electric power generation data analysis, which are helpful in enterprise production and policy scheduling. Considering that time-delay is a universal phenomenon in real life and engineering application, a new and comprehensive conformable fractional grey time-delay model is established by extending classical grey models with the forms of conformable fractional derivative, conformable fractional accumulation and delay parameters. Considering delay data is always unknown, Lagrange interpolation is used to estimate the time-delay data. Compared with linear estimation, high order Lagrange interpolation will provide more detail information in the fitting stage. Furthermore, the optimal and modified models are also disused for predicting the future power generation by the tested data in this paper. The errors between the simulated and real data were analyzed and predicted by autoregression model, which is good at revealing the inner trend for historical residuals. The accuracies of modeling and forecasting can be improved by the optimization algorithm and autoregression error estimation in this paper. The results show the optimal and modified models could be widely used in forecasting electrical time series data, which has high effectiveness and flexibility. The novel model could enrich the connotation of parameters and the physical significance of the traditional fractional grey model.

Suggested Citation

  • Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002144
    DOI: 10.1016/j.chaos.2022.112004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    2. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.
    3. Lin Chen & Zhibin Liu & Nannan Ma, 2018. "Time-Delayed Polynomial Grey System Model with the Fractional Order Accumulation," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-7, November.
    4. Zhao, Dazhi & Pan, Xueqin & Luo, Maokang, 2018. "A new framework for multivariate general conformable fractional calculus and potential applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 271-280.
    5. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    7. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    8. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    9. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    10. Yanning Wang & Jianwen Zhou & Yongkun Li, 2016. "Fractional Sobolev’s Spaces on Time Scales via Conformable Fractional Calculus and Their Application to a Fractional Differential Equation on Time Scales," Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-21, November.
    11. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    2. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    3. He, Jing & Mao, Shuhua & Kang, Yuxiao, 2023. "Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 220-247.
    4. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    6. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    7. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Zeng, Bo & He, Chengxiang & Mao, Cuiwei & Wu, You, 2023. "Forecasting China's hydropower generation capacity using a novel grey combination optimization model," Energy, Elsevier, vol. 262(PA).
    9. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    10. Wang, Siwei & Xiao, Xinping & Ding, Qi, 2024. "A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery," Energy, Elsevier, vol. 290(C).
    11. Xu, Jie & Wu, Wen-Ze & Liu, Chong & Xie, Wanli & Zhang, Tao, 2024. "An extensive conformable fractional grey model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    13. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    14. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    15. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    16. Zhang, Yunxin & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2023. "A novel grey Lotka–Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting," Energy, Elsevier, vol. 264(C).
    17. Tong, Mingyu & Dong, Jingrong & Luo, Xilin & Yin, Dejun & Duan, Huiming, 2022. "Coal consumption forecasting using an optimized grey model: The case of the world's top three coal consumers," Energy, Elsevier, vol. 242(C).
    18. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    19. Yijue Sun & Fenglin Zhang, 2022. "Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    20. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.