IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10896-d903383.html
   My bibliography  Save this article

Research on the ECC of Chengdu–Chongqing’s Urban Agglomeration in China Based on System Dynamics

Author

Listed:
  • Xiaohu Ci

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Liping Zhang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
    Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
    Institute of Water Security, Wuhan University, Wuhan 430072, China)

  • Tongxiang Wang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Yi Xiao

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
    Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
    Institute of Water Security, Wuhan University, Wuhan 430072, China)

  • Jun Xia

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
    Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
    Institute of Water Security, Wuhan University, Wuhan 430072, China)

Abstract

The ecological carrying capacity (ECC) is a prerequisite for China’s regional and green developments. Since the Chengdu–Chongqing urban agglomeration (CCUA) is an important economic area, it is important to study the development of its ECC in order to establish its green development and to promote its regionally coordinated development in China. This paper first establishes the ECC evaluation index system based on the Pressure–State–Response (PSR) model and AHP-TOPSIS. Secondly, it estimates the ECC of the CCUA between 2000 and 2018. Thirdly, it constructs a system dynamics model of the ECC and, finally, it simulates and predicts the ECC from 2021 to 2050 based on shared socioeconomic pathways. The results show that the ECC indices of 16 cities in the CCUA have increased significantly in 18 years and the annual ECC indices from 2021 to 2050 all show significant growth trends. This paper will show that the CCUA should select the most suitable development mode to be adopted in the different periods. The development should follow SSP2 from 2021 to 2025, SSP1 from 2026 to 2035, and the development characteristics of SSP5 should be referred to at levels between 2036 and 2050, based on the CCUA’s overall development in accordance with SSP1.

Suggested Citation

  • Xiaohu Ci & Liping Zhang & Tongxiang Wang & Yi Xiao & Jun Xia, 2022. "Research on the ECC of Chengdu–Chongqing’s Urban Agglomeration in China Based on System Dynamics," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10896-:d:903383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    2. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    3. Harold Levrel & Christian Kerbiriou & Denis Couvet & Jacques Weber, 2009. "OECD Pressure-State-Response indicators for managing biodiversity: A realistic perspective for a French biosphere reserve," Post-Print hal-00511602, HAL.
    4. Haier Ying & Suya Chen & Yuqin Mao, 2022. "Research on Marine Ecological Carrying Capacity of Ningbo City in China Based on System Dynamics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    5. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Zhao & Hao Wu, 2022. "A System Dynamics Model of Multi-Airport Logistics System under the Impact of COVID-19: A Case of Jing-Jin-Ji Multi-Airport System in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    2. Xiaoyan Bu & Xiaomin Wang & Jiarui Wang & Ge Shi, 2023. "A Study on Resource Carrying Capacity and Early Warning of Urban Agglomerations of the Yellow River Basin Based on Sustainable Development Goals, China," Sustainability, MDPI, vol. 15(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    2. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    3. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    4. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    5. Halvard Buhaug & Jonas Vestby, 2019. "On Growth Projections in the Shared SocioeconomicPathways," Global Environmental Politics, MIT Press, vol. 19(4), pages 118-132, November.
    6. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    8. Athanasios Thomas Vafeidis & Lena Reimann & Gerald Jan Ellen & Gunnel Goransson & Gerben Koers & Lisa Van Well & Bente Vollstedt & Maureen Tsakiris & Amy Oen, 2024. "Harmonizing the Development of Local Socioeconomic Scenarios: A Participatory Downscaling Approach Applied in Four European Case Studies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    9. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    10. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    11. Mason-D'Croz, Daniel & Sulser, Timothy B. & Wiebe, Keith & Rosegrant, Mark W. & Lowder, Sarah K. & Nin-Pratt, Alejandro & Willenbockel, Dirk & Robinson, Sherman & Zhu, Tingju & Cenacchi, Nicola & Duns, 2019. "Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger," World Development, Elsevier, vol. 116(C), pages 38-53.
    12. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Pedro R. R. Rochedo & Panagiotis Fragkos & Rafael Garaffa & Lilia Caiado Couto & Luiz Bernardo Baptista & Bruno S. L. Cunha & Roberto Schaeffer & Alexandre Szklo, 2021. "Is Green Recovery Enough? Analysing the Impacts of Post-COVID-19 Economic Packages," Energies, MDPI, vol. 14(17), pages 1-19, September.
    14. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    15. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    16. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    17. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
    19. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    20. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10896-:d:903383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.