IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1676.html
   My bibliography  Save this paper

Statistical Approximation of High-Dimensional Climate Models

Author

Listed:
  • Alena Miftakhova

    (University of Zurich)

  • Kenneth L. Judd

    (Stanford University, Center for Robust Decisionmaking on Climate & Energy Policy (RDCEP), and National Bureau of Economic Research (NBER))

  • Thomas S. Lontzek

    (University of Zurich; Center for Robust Decisionmaking on Climate & Energy Policy (RDCEP))

  • Karl Schmedders

    (University of Zurich)

Abstract

In many studies involving complex representation of the Earth's climate, the number of runs for the particular model is highly restricted and the designed set of input scenarios has to be reduced correspondingly. Furthermore, many integrated assessment models, in particular those focusing on intrinsic uncertainty in social decision-making, suffer from poor representations of the climate system ue to computational constraints.In this study, using emission scenarios as input and the temperature anomaly as a predicted response variable, we construct low-dimensional approximations of high-dimensional climate models, as represented by MAGICC. In order to extract as much explanatory power as possible from the high-dimensional climate models, we construct orthogonal emissions scenarios that carry minimum repetitive information. Our method is especially useful when there is pressure to keep the number of scenarios as low as possible. We demonstrate that temperature levels can be inferred immediately from the CO2 emissions data within a one-line model that performs very well on conventional scenarios. Furthermore, we provide a system of equations that is ready to be deployed in macroeconomic optimization models. Thus, our study enhances the methodology applied in the emulation of complex climate models and facilitates the use of more realistic climate representations in economic integrated assessment models.

Suggested Citation

  • Alena Miftakhova & Kenneth L. Judd & Thomas S. Lontzek & Karl Schmedders, 2016. "Statistical Approximation of High-Dimensional Climate Models," Swiss Finance Institute Research Paper Series 16-76, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1676
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2887292
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2011. "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," Quantitative Economics, Econometric Society, vol. 2(2), pages 173-210, July.
    2. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Crost, Benjamin & Traeger, Christian P., 2013. "Optimal climate policy: Uncertainty versus Monte Carlo," Economics Letters, Elsevier, vol. 120(3), pages 552-558.
    5. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    6. Mort Webster & Nidhi Santen & Panos Parpas, 2012. "An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty," Computational Management Science, Springer, vol. 9(3), pages 339-362, August.
    7. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    8. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    9. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    10. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    11. Chris Hope, 2013. "Critical issues for the calculation of the social cost of CO 2 : why the estimates from PAGE09 are higher than those from PAGE2002," Climatic Change, Springer, vol. 117(3), pages 531-543, April.
    12. Stephen C. Newbold & Charles Griffiths & Chris Moore & Ann Wolverton & Elizabeth Kopits, 2013. "A Rapid Assessment Model For Understanding The Social Cost Of Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-40.
    13. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    14. Joseph Guinness & Dorit Hammerling, 2018. "Compression and Conditional Emulation of Climate Model Output," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 56-67, January.
    15. Johannes Brumm & Simon Scheidegger, 2017. "Using Adaptive Sparse Grids to Solve High‐Dimensional Dynamic Models," Econometrica, Econometric Society, vol. 85, pages 1575-1612, September.
    16. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    17. Lilia Maliar & Serguei Maliar, 2015. "Merging simulation and projection approaches to solve high‐dimensional problems with an application to a new Keynesian model," Quantitative Economics, Econometric Society, vol. 6(1), pages 1-47, March.
    18. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    19. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    20. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    21. Thomas S. Lontzek & Yongyang Cai & Kenneth L. Judd & Timothy M. Lenton, 2015. "Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy," Nature Climate Change, Nature, vol. 5(5), pages 441-444, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Dietz & Frederick van der Ploeg & Armon Rezai & Frank Venmans, 2021. "Are Economists Getting Climate Dynamics Right and Does It Matter?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(5), pages 895-921.
    2. Arik Sadeh & Claudia Florina Radu & Cristina Feniser & Andrei Borşa, 2020. "Governmental Intervention and Its Impact on Growth, Economic Development, and Technology in OECD Countries," Sustainability, MDPI, vol. 13(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    2. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    3. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    4. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    5. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    6. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    7. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    9. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    10. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    11. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    12. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    15. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    16. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    17. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    18. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    19. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    20. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    More about this item

    Keywords

    Climate Change; Greenhouse Gas; Single Equation Models;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.