Improved Neural Network Algorithm Based Flow Characteristic Curve Fitting for Hydraulic Turbines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jun Lin & Lei Su & Yingjie Yan & Gehao Sheng & Da Xie & Xiuchen Jiang, 2018. "Prediction Method for Power Transformer Running State Based on LSTM_DBN Network," Energies, MDPI, vol. 11(7), pages 1-14, July.
- Huseyin Cagan Kilinc & Adem Yurtsever, 2022. "Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
- Jianguo Zhou & Xuechao Yu & Baoling Jin, 2018. "Short-Term Wind Power Forecasting: A New Hybrid Model Combined Extreme-Point Symmetric Mode Decomposition, Extreme Learning Machine and Particle Swarm Optimization," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
- Zhe Yang & Kan Yang & Lyuwen Su & Hu Hu, 2020. "The Short-Term Economical Operation Problem for Hydropower Station Using Chaotic Normal Cloud Model Based Discrete Shuffled Frog Leaping Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 905-927, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
- Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
- Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.
- Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
- Varshini, Anu & Kayal, Parthajit & Maiti, Moinak, 2024. "How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample," Resources Policy, Elsevier, vol. 92(C).
- Zhengxuan Xiao & Fei Tang & Mengyuan Wang, 2023. "Wind Power Short-Term Forecasting Method Based on LSTM and Multiple Error Correction," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
- Enci Liu & Jie Li & Anni Zheng & Haoran Liu & Tao Jiang, 2022. "Research on the Prediction Model of the Used Car Price in View of the PSO-GRA-BP Neural Network," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
- Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
- Kun Yang & Kan Yang, 2021. "Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3771-3790, September.
- Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
- Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
- Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
- Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
- Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
- Yang, Zhe & Wang, Yufeng & Yang, Kan, 2022. "The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts," Energy, Elsevier, vol. 241(C).
- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
More about this item
Keywords
LSTM; hydraulic turbines; flow characteristic curves; deep learning; IPSO;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10757-:d:900775. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.